On the evolution of neural networks for pairwise classification using gene expression programming

Stephen Johns, M. Santos
{"title":"On the evolution of neural networks for pairwise classification using gene expression programming","authors":"Stephen Johns, M. Santos","doi":"10.1145/1569901.1570227","DOIUrl":null,"url":null,"abstract":"Neural networks are a common choice for solving classification problems, but require experimental adjustments of the topology, weights and thresholds to be effective. Success has been seen in the development of neural networks with evolutionary algorithms, making the extension of this work to classification problems a logical step. This paper presents the first known use of the Gene Expression Programming-based GEP-NN algorithm to design neural networks for classification purposes. The system uses pairwise decomposition to produce a series of binary classifiers for a given multi-class problem, with the results of the classifier set being combined by majority vote.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Neural networks are a common choice for solving classification problems, but require experimental adjustments of the topology, weights and thresholds to be effective. Success has been seen in the development of neural networks with evolutionary algorithms, making the extension of this work to classification problems a logical step. This paper presents the first known use of the Gene Expression Programming-based GEP-NN algorithm to design neural networks for classification purposes. The system uses pairwise decomposition to produce a series of binary classifiers for a given multi-class problem, with the results of the classifier set being combined by majority vote.
基于基因表达式编程的神经网络两两分类进化研究
神经网络是解决分类问题的常用选择,但需要对拓扑、权值和阈值进行实验调整才能有效。在进化算法的神经网络的发展中已经看到了成功,这使得将这项工作扩展到分类问题是一个合乎逻辑的步骤。本文提出了已知的第一个使用基于基因表达编程的GEP-NN算法来设计用于分类目的的神经网络。该系统对给定的多类问题使用两两分解生成一系列二元分类器,分类器集的结果通过多数投票组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信