{"title":"On Learning Context-Free Grammars Using Skeletons","authors":"G. L. Prajapati, N. Chaudhari, M. Chandwani","doi":"10.1109/ICETET.2008.167","DOIUrl":null,"url":null,"abstract":"In 1992, Sakakibara introduced a well-known approach for learning context-free grammars from positive samples of structural descriptions (skeletons). In particular, Sakakibarapsilas approach uses reversible tree automata construction algorithm RT. Here, we introduce a modification of the learning algorithm RT for reversible tree automata. With respect to n, where n is the sum of the sizes of the input skeletons, our modification for RT, called e_RT, needs O(n3) operations and achieves the storage space saving by a factor of O(n) over RT. Using our e_RT, we give an algorithm e_RC to learn reversible context-free grammars from positive samples of their structural descriptions. Furthermore, we modify e_RC to learn extended reversible context-free grammars from positive-only examples. Finally, we present summary of our experiments carried out to see how our results compare with those of Sakakibara, which also confirms our approach as efficient and useful.","PeriodicalId":269929,"journal":{"name":"2008 First International Conference on Emerging Trends in Engineering and Technology","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Emerging Trends in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2008.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In 1992, Sakakibara introduced a well-known approach for learning context-free grammars from positive samples of structural descriptions (skeletons). In particular, Sakakibarapsilas approach uses reversible tree automata construction algorithm RT. Here, we introduce a modification of the learning algorithm RT for reversible tree automata. With respect to n, where n is the sum of the sizes of the input skeletons, our modification for RT, called e_RT, needs O(n3) operations and achieves the storage space saving by a factor of O(n) over RT. Using our e_RT, we give an algorithm e_RC to learn reversible context-free grammars from positive samples of their structural descriptions. Furthermore, we modify e_RC to learn extended reversible context-free grammars from positive-only examples. Finally, we present summary of our experiments carried out to see how our results compare with those of Sakakibara, which also confirms our approach as efficient and useful.