Byzantine Fault-Tolerant MapReduce: Faults are Not Just Crashes

Pedro Costa, Marcelo Pasin, A. Bessani, M. Correia
{"title":"Byzantine Fault-Tolerant MapReduce: Faults are Not Just Crashes","authors":"Pedro Costa, Marcelo Pasin, A. Bessani, M. Correia","doi":"10.1109/CloudCom.2011.15","DOIUrl":null,"url":null,"abstract":"MapReduce is often used to run critical jobs such as scientific data analysis. However, evidence in the literature shows that arbitrary faults do occur and can probably corrupt the results of MapReduce jobs. MapReduce runtimes like Hadoop tolerate crash faults, but not arbitrary or Byzantine faults. We present a MapReduce algorithm and prototype that tolerate these faults. An experimental evaluation shows that the execution of a job with our algorithms uses twice the resources of the original Hadoop, instead of the 3 or 4 times more that would be achieved with the direct application of common Byzantine fault-tolerance paradigms. We believe this cost is acceptable for critical applications that require that level of fault tolerance.","PeriodicalId":427190,"journal":{"name":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","volume":"10878 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Third International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2011.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

MapReduce is often used to run critical jobs such as scientific data analysis. However, evidence in the literature shows that arbitrary faults do occur and can probably corrupt the results of MapReduce jobs. MapReduce runtimes like Hadoop tolerate crash faults, but not arbitrary or Byzantine faults. We present a MapReduce algorithm and prototype that tolerate these faults. An experimental evaluation shows that the execution of a job with our algorithms uses twice the resources of the original Hadoop, instead of the 3 or 4 times more that would be achieved with the direct application of common Byzantine fault-tolerance paradigms. We believe this cost is acceptable for critical applications that require that level of fault tolerance.
拜占庭容错MapReduce:故障不只是崩溃
MapReduce通常用于运行科学数据分析等关键任务。然而,文献中的证据表明,任意错误确实会发生,并且可能会破坏MapReduce作业的结果。MapReduce运行时像Hadoop一样可以容忍崩溃错误,但不能容忍任意或拜占庭式错误。我们提出了一个MapReduce算法和原型,可以容忍这些错误。实验评估表明,使用我们的算法执行作业使用的资源是原始Hadoop的两倍,而不是直接应用常见的拜占庭容错范例所能达到的3或4倍。我们认为,对于需要这种容错级别的关键应用程序,这个成本是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信