Sign Language Detection from Hand Gesture Images using Deep Multi-layered Convolution Neural Network

R. Bhadra, Subhajit Kar
{"title":"Sign Language Detection from Hand Gesture Images using Deep Multi-layered Convolution Neural Network","authors":"R. Bhadra, Subhajit Kar","doi":"10.1109/CMI50323.2021.9362897","DOIUrl":null,"url":null,"abstract":"Automatic detection of sign language from hand gesture images is crucial nowadays. Accurate detection and classification of sign language can help people with hearing and speech disorder. In this paper, a deep multi-layered convolution neural network is proposed for this purpose. In the proposed approach, 32 convolution filters with 3 x3 kernel, LeakyReLU activation function and 2 x2 max pooling operation have been performed in the deep multi-layered CNN structure. SoftMax activation function has been used in the output layer. The proposed approach has been evaluated on a database containing both static (54000 images and 36 classes) and dynamic (49613 images and 23 classes) hand gesture images. Experimental results demonstrate the efficacy of the proposed methodology in sign language detection task.","PeriodicalId":142069,"journal":{"name":"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Second International Conference on Control, Measurement and Instrumentation (CMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMI50323.2021.9362897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Automatic detection of sign language from hand gesture images is crucial nowadays. Accurate detection and classification of sign language can help people with hearing and speech disorder. In this paper, a deep multi-layered convolution neural network is proposed for this purpose. In the proposed approach, 32 convolution filters with 3 x3 kernel, LeakyReLU activation function and 2 x2 max pooling operation have been performed in the deep multi-layered CNN structure. SoftMax activation function has been used in the output layer. The proposed approach has been evaluated on a database containing both static (54000 images and 36 classes) and dynamic (49613 images and 23 classes) hand gesture images. Experimental results demonstrate the efficacy of the proposed methodology in sign language detection task.
基于深度多层卷积神经网络的手势图像手语检测
如今,从手势图像中自动检测手语是非常重要的。对手语的准确检测和分类可以帮助听力和语言障碍患者。为此,本文提出了一种深度多层卷积神经网络。在该方法中,在深层多层CNN结构中进行了32个具有3 × 3核、LeakyReLU激活函数和2 × 2 max池化操作的卷积滤波器。输出层已使用SoftMax激活功能。在包含静态(54000张图像和36个类)和动态(49613张图像和23个类)手势图像的数据库上对所提出的方法进行了评估。实验结果证明了该方法在手语检测任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信