N. Deligiannis, M. Jacobs, J. Barbarien, Frederik Verbist, Jozef Skorupa, R. Van de Walle, A. Skodras, P. Schelkens, A. Munteanu
{"title":"Joint DC coefficient band decoding and motion estimation in Wyner-Ziv video coding","authors":"N. Deligiannis, M. Jacobs, J. Barbarien, Frederik Verbist, Jozef Skorupa, R. Van de Walle, A. Skodras, P. Schelkens, A. Munteanu","doi":"10.1109/ICDSP.2011.6004904","DOIUrl":null,"url":null,"abstract":"In contrast to traditional predictive coding, Wyner-Ziv video coding enables low-cost encoding architectures, in which the computationally expensive tasks for performing motion estimation are shifted to the decoder-side. In Wyner-Ziv video coding, side-information generation is a key aspect profoundly affecting the compression capacity of the system. This paper presents a novel technique which enables side-information refinement after DC coefficient band decoding in a transform-domain Wyner-Ziv video codec. The proposed side-information refinement approach performs overlapped block motion estimation and compensation, utilizing multi-hypothesis pixel-based prediction. The experimental results show that the presented Wyner-Ziv video codec incorporating the proposed technique yields significant and systematic compression gains of up to 23.22% with respect to the state-of-the-art DISCOVER codec.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In contrast to traditional predictive coding, Wyner-Ziv video coding enables low-cost encoding architectures, in which the computationally expensive tasks for performing motion estimation are shifted to the decoder-side. In Wyner-Ziv video coding, side-information generation is a key aspect profoundly affecting the compression capacity of the system. This paper presents a novel technique which enables side-information refinement after DC coefficient band decoding in a transform-domain Wyner-Ziv video codec. The proposed side-information refinement approach performs overlapped block motion estimation and compensation, utilizing multi-hypothesis pixel-based prediction. The experimental results show that the presented Wyner-Ziv video codec incorporating the proposed technique yields significant and systematic compression gains of up to 23.22% with respect to the state-of-the-art DISCOVER codec.