Elliptic Metric K-NN Method with Asymptotic MDL Measure

T. Satonaka, K. Uchimura
{"title":"Elliptic Metric K-NN Method with Asymptotic MDL Measure","authors":"T. Satonaka, K. Uchimura","doi":"10.1109/ICIP.2006.312864","DOIUrl":null,"url":null,"abstract":"We describe an adaptive metric learning model combining the generative and the discriminative models for the face recognition. The asymptotic model based on the MDL measure is formulated for each class to estimate the variance by using small training examples. The feature fusion method is introduced to assume the missing patterns between the classes and to deal with the k-th nearest neighbor classification. The metric parameters obtained from the asymptotic MDL estimation are refined by using the synthesized feature patterns. We demonstrate an improved recognition performance on the ORL and UMIST face databases.","PeriodicalId":299355,"journal":{"name":"2006 International Conference on Image Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2006.312864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe an adaptive metric learning model combining the generative and the discriminative models for the face recognition. The asymptotic model based on the MDL measure is formulated for each class to estimate the variance by using small training examples. The feature fusion method is introduced to assume the missing patterns between the classes and to deal with the k-th nearest neighbor classification. The metric parameters obtained from the asymptotic MDL estimation are refined by using the synthesized feature patterns. We demonstrate an improved recognition performance on the ORL and UMIST face databases.
具有渐近MDL测度的椭圆度量K-NN方法
提出了一种结合生成模型和判别模型的人脸识别自适应度量学习模型。基于MDL测度的渐近模型对每个类使用小训练样例估计方差。引入特征融合方法来假设类间缺失模式,并处理第k近邻分类。利用合成的特征模式对渐近MDL估计得到的度量参数进行细化。我们在ORL和UMIST人脸数据库上展示了改进的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信