Multi-Stage PSO-Based Cost Minimization for Computation Offloading in Vehicular Edge Networks

Yihan Wen, Qiuyue Zhang, Haitao Yuan, J. Bi
{"title":"Multi-Stage PSO-Based Cost Minimization for Computation Offloading in Vehicular Edge Networks","authors":"Yihan Wen, Qiuyue Zhang, Haitao Yuan, J. Bi","doi":"10.1109/ICNSC52481.2021.9702184","DOIUrl":null,"url":null,"abstract":"With the fast development of autonomous driving, the demand of computing resources becomes a big challenge for resource-constrained vehicles. To alleviate this issue, vehicular edge computing (VEC) has been proposed to offload real-time computation tasks from vehicles. However, complex physical constraints in real VEC applications make computation task offloading become a fundamental issue in VEC. A high-quality offloading strategy can not only complete computational tasks, but also minimize the cost of computing and resource offloading. The work proposes a multi-stage particle swarm optimization (MPSO)-based offloading method for VEC. It significantly optimizes the energy cost under specified delay limits. Compared with original PSO, it improves the convergence by applying a staged optimization strategy. Experiments show that it saves 91%–97% of cost than a typical random offloading strategy, depending on delay limits and vehicle numbers. Moreover, it has 31% improvement of convergence than a PSO-based method under the same simulation parameter setting.","PeriodicalId":129062,"journal":{"name":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC52481.2021.9702184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the fast development of autonomous driving, the demand of computing resources becomes a big challenge for resource-constrained vehicles. To alleviate this issue, vehicular edge computing (VEC) has been proposed to offload real-time computation tasks from vehicles. However, complex physical constraints in real VEC applications make computation task offloading become a fundamental issue in VEC. A high-quality offloading strategy can not only complete computational tasks, but also minimize the cost of computing and resource offloading. The work proposes a multi-stage particle swarm optimization (MPSO)-based offloading method for VEC. It significantly optimizes the energy cost under specified delay limits. Compared with original PSO, it improves the convergence by applying a staged optimization strategy. Experiments show that it saves 91%–97% of cost than a typical random offloading strategy, depending on delay limits and vehicle numbers. Moreover, it has 31% improvement of convergence than a PSO-based method under the same simulation parameter setting.
基于多阶段pso的车辆边缘网络计算卸载成本最小化
随着自动驾驶的快速发展,对计算资源的需求成为资源受限车辆面临的一大挑战。为了缓解这一问题,人们提出了车辆边缘计算(VEC)来减轻车辆的实时计算任务。然而,实际VEC应用中复杂的物理约束使得计算任务卸载成为VEC的一个基本问题。一个高质量的卸载策略不仅可以完成计算任务,而且可以最小化计算成本和资源卸载。提出了一种基于多级粒子群优化(MPSO)的VEC卸载方法。它在规定的延迟限制下显著地优化了能源成本。与原粒子群算法相比,该算法采用了分段优化策略,提高了算法的收敛性。实验表明,根据延误限制和车辆数量的不同,该方法比典型的随机卸载策略节省91%-97%的成本。在相同的仿真参数设置下,该方法的收敛性比基于粒子群的方法提高了31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信