Use of syllable nuclei locations to improve ASR

C. Bartels, J. Bilmes
{"title":"Use of syllable nuclei locations to improve ASR","authors":"C. Bartels, J. Bilmes","doi":"10.1109/ASRU.2007.4430134","DOIUrl":null,"url":null,"abstract":"This work presents the use of dynamic Bayesian networks (DBNs) to jointly estimate word position and word identity in an automatic speech recognition system. In particular, we have augmented a standard Hidden Markov Model (HMM) with counts and locations of syllable nuclei. Three experiments are presented here. The first uses oracle syllable counts, the second uses oracle syllable nuclei locations, and the third uses estimated (non-oracle) syllable nuclei locations. All results are presented on the 10 and 500 word tasks of the SVitch-board corpus. The oracle experiments give relative improvements ranging from 7.0% to 37.2%. When using estimated syllable nuclei a relative improvement of 3.1% is obtained on the 10 word task.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This work presents the use of dynamic Bayesian networks (DBNs) to jointly estimate word position and word identity in an automatic speech recognition system. In particular, we have augmented a standard Hidden Markov Model (HMM) with counts and locations of syllable nuclei. Three experiments are presented here. The first uses oracle syllable counts, the second uses oracle syllable nuclei locations, and the third uses estimated (non-oracle) syllable nuclei locations. All results are presented on the 10 and 500 word tasks of the SVitch-board corpus. The oracle experiments give relative improvements ranging from 7.0% to 37.2%. When using estimated syllable nuclei a relative improvement of 3.1% is obtained on the 10 word task.
使用音节核位置来提高ASR
这项工作提出了使用动态贝叶斯网络(dbn)来联合估计自动语音识别系统中的单词位置和单词身份。特别是,我们用音节核的数量和位置增强了标准的隐马尔可夫模型(HMM)。本文给出了三个实验。第一个使用oracle音节计数,第二个使用oracle音节核位置,第三个使用估计的(非oracle)音节核位置。所有结果都是在SVitch-board语料库的10字和500字任务上呈现的。oracle实验给出的相对改进幅度在7.0%到37.2%之间。当使用估计音节核时,在10字任务中获得了3.1%的相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信