An ancestor based extension to Differential Evolution (AncDE) for Single-Objective Computationally Expensive Numerical Optimization

Rushikesh Sawant, D. Hatton, D. O'Donoghue
{"title":"An ancestor based extension to Differential Evolution (AncDE) for Single-Objective Computationally Expensive Numerical Optimization","authors":"Rushikesh Sawant, D. Hatton, D. O'Donoghue","doi":"10.1109/CEC.2015.7257293","DOIUrl":null,"url":null,"abstract":"This paper presents the Ancestral Differential Evolution (AncDE) algorithm, which extends the standard Differential Evolution (DE) algorithm by adding an archive of recently discarded ancestors. AncDE adds the ability to occasionally compute difference vectors between current and archived solutions, using these inter-generational difference vectors in place of traditional difference vectors. Results for AncDE are presented for the CEC2015 Bound Constrained Single-Objective Computationally Expensive Numerical Optimization Problems using AncDE/best/1/bin. Summary results are included for standard DE for comparison purposes and these show that AncDE generally outperforms standard DE. These results suggest that the inter-generational difference vectors can help overcome some local optima, leading to faster convergence towards the global optimum. AncDE involves the very small overhead of storing and updating the ancestral cache. This paper introduces two empirically determined stochastic rates; one for updating the ancestral cache and the other for using an ancestral difference vector in place of the normal difference vector.","PeriodicalId":403666,"journal":{"name":"2015 IEEE Congress on Evolutionary Computation (CEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2015.7257293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents the Ancestral Differential Evolution (AncDE) algorithm, which extends the standard Differential Evolution (DE) algorithm by adding an archive of recently discarded ancestors. AncDE adds the ability to occasionally compute difference vectors between current and archived solutions, using these inter-generational difference vectors in place of traditional difference vectors. Results for AncDE are presented for the CEC2015 Bound Constrained Single-Objective Computationally Expensive Numerical Optimization Problems using AncDE/best/1/bin. Summary results are included for standard DE for comparison purposes and these show that AncDE generally outperforms standard DE. These results suggest that the inter-generational difference vectors can help overcome some local optima, leading to faster convergence towards the global optimum. AncDE involves the very small overhead of storing and updating the ancestral cache. This paper introduces two empirically determined stochastic rates; one for updating the ancestral cache and the other for using an ancestral difference vector in place of the normal difference vector.
基于祖先的差分进化(AncDE)在单目标昂贵计算数值优化中的扩展
本文提出了祖先差分进化(AncDE)算法,该算法通过添加最近丢弃的祖先存档来扩展标准差分进化(DE)算法。AncDE增加了偶尔计算当前和存档解决方案之间的差异向量的能力,使用这些代际差异向量代替传统的差异向量。利用AncDE/best/1/bin对CEC2015有界约束单目标计算代价昂贵的数值优化问题进行了求解。为了进行比较,我们将标准DE的总结结果包括在内,这些结果表明,andde通常优于标准DE。这些结果表明,代际差异向量可以帮助克服一些局部最优,从而更快地收敛到全局最优。andde涉及到非常小的存储和更新祖先缓存的开销。本文介绍了两种经验确定的随机率;一个用于更新祖先缓存,另一个用于使用祖先差向量代替法差向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信