Reconfiguring Independent Sets on Interval Graphs

Marcin Bria'nski, S. Felsner, Jkedrzej Hodor, Piotr Micek
{"title":"Reconfiguring Independent Sets on Interval Graphs","authors":"Marcin Bria'nski, S. Felsner, Jkedrzej Hodor, Piotr Micek","doi":"10.4230/LIPIcs.MFCS.2021.23","DOIUrl":null,"url":null,"abstract":"We study reconfiguration of independent sets in interval graphs under the token sliding rule. We show that if two independent sets of size k are reconfigurable in an n-vertex interval graph, then there is a reconfiguration sequence of length O(k · n). We also provide a construction in which the shortest reconfiguration sequence is of length Ω(k · n). As a counterpart to these results, we also establish that Independent Set Reconfiguration is PSPACE-hard on incomparability graphs, of which interval graphs are a special case.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2021.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study reconfiguration of independent sets in interval graphs under the token sliding rule. We show that if two independent sets of size k are reconfigurable in an n-vertex interval graph, then there is a reconfiguration sequence of length O(k · n). We also provide a construction in which the shortest reconfiguration sequence is of length Ω(k · n). As a counterpart to these results, we also establish that Independent Set Reconfiguration is PSPACE-hard on incomparability graphs, of which interval graphs are a special case.
重新配置区间图上的独立集
研究了区间图中独立集在令牌滑动规则下的重构问题。我们证明了在一个n顶点的区间图中,如果两个大小为k的独立集是可重构的,那么存在一个长度为O(k·n)的重构序列。我们还提供了一个最短重构序列长度为Ω(k·n)的构造。与这些结果相对应,我们还证明了独立集重构在不可比较图上是PSPACE-hard的,其中区间图是一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信