Conditionally Secure Multiparty Computation using Secret Sharing Scheme for n < 2k-1 (Short Paper)

A. Kamal, Keiichi Iwamura
{"title":"Conditionally Secure Multiparty Computation using Secret Sharing Scheme for n < 2k-1 (Short Paper)","authors":"A. Kamal, Keiichi Iwamura","doi":"10.1109/PST.2017.00034","DOIUrl":null,"url":null,"abstract":"Typically, when secrecy multiplication is performed in multiparty computation using Shamir's (k,n) threshold secret sharing scheme, the result is a polynomial with degree of 2k-2 instead of k-1 This causes a problem where, in order to reconstruct a multiplication result, the number of polynomials needed will increase from k to 2k-1. In this paper, we propose a multiparty computation that uses a secret sharing scheme that is secure against a product-sum operation but does not increase the degree of polynomial of the output. We prove that all combinations of the basic operations (addition, subtraction, multiplication, and division) can be performed securely using this scheme. We also propose three preconditions and finally show that our proposed method is information-theoretic secure against a passive adversary.","PeriodicalId":405887,"journal":{"name":"2017 15th Annual Conference on Privacy, Security and Trust (PST)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th Annual Conference on Privacy, Security and Trust (PST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PST.2017.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Typically, when secrecy multiplication is performed in multiparty computation using Shamir's (k,n) threshold secret sharing scheme, the result is a polynomial with degree of 2k-2 instead of k-1 This causes a problem where, in order to reconstruct a multiplication result, the number of polynomials needed will increase from k to 2k-1. In this paper, we propose a multiparty computation that uses a secret sharing scheme that is secure against a product-sum operation but does not increase the degree of polynomial of the output. We prove that all combinations of the basic operations (addition, subtraction, multiplication, and division) can be performed securely using this scheme. We also propose three preconditions and finally show that our proposed method is information-theoretic secure against a passive adversary.
基于n < 2k-1秘密共享方案的条件安全多方计算(短文)
通常,当使用Shamir的(k,n)阈值秘密共享方案在多方计算中执行保密乘法时,结果是一个程度为2k-2而不是k-1的多项式。这导致了一个问题,为了重建乘法结果,所需的多项式数量将从k增加到2k-1。在本文中,我们提出了一种使用秘密共享方案的多方计算,该方案对乘积和运算是安全的,但不会增加输出的多项式度。我们证明了使用该方案可以安全地执行所有基本运算(加、减、乘、除)的组合。我们还提出了三个前提条件,最后证明了我们提出的方法对被动对手是信息论安全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信