M. Karafiát, M. Baskar, P. Matejka, Karel Veselý, F. Grézl, J. Černocký
{"title":"Multilingual BLSTM and speaker-specific vector adaptation in 2016 but babel system","authors":"M. Karafiát, M. Baskar, P. Matejka, Karel Veselý, F. Grézl, J. Černocký","doi":"10.1109/SLT.2016.7846330","DOIUrl":null,"url":null,"abstract":"This paper provides an extensive summary of BUT 2016 system for the last IARPA Babel evaluations. It concentrates on multi-lingual training of both deep neural network (DNN)-based feature extraction and acoustic models including multilingual training of bidirectional Long Short Term memory networks. Next, two low-dimensional vector approaches to speaker adaptation are investigated: i-vectors and sequence-summarizing neural networks (SSNN). The results provided on three Babel Year 4 languages show clear advantage of both approaches in case limited amount of training data is available. The time necessary for the development of a new system is addressed too, as some of the investigated techniques do not require extensive re-training of the whole system.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
This paper provides an extensive summary of BUT 2016 system for the last IARPA Babel evaluations. It concentrates on multi-lingual training of both deep neural network (DNN)-based feature extraction and acoustic models including multilingual training of bidirectional Long Short Term memory networks. Next, two low-dimensional vector approaches to speaker adaptation are investigated: i-vectors and sequence-summarizing neural networks (SSNN). The results provided on three Babel Year 4 languages show clear advantage of both approaches in case limited amount of training data is available. The time necessary for the development of a new system is addressed too, as some of the investigated techniques do not require extensive re-training of the whole system.