Meta-heuristics Applied to Multiple DG Allocation in Radial Distribution Network: A comparative study

Ali Tarraq, Faissal Elmariami, Abdelaziz Belfqih, Touria Haidi, Naima Agouzoul, Rabiaa Gadal
{"title":"Meta-heuristics Applied to Multiple DG Allocation in Radial Distribution Network: A comparative study","authors":"Ali Tarraq, Faissal Elmariami, Abdelaziz Belfqih, Touria Haidi, Naima Agouzoul, Rabiaa Gadal","doi":"10.1109/ISCV54655.2022.9806131","DOIUrl":null,"url":null,"abstract":"Due to the increasing electricity demand, the distribution network is becoming more and more uncontrollable and subject to higher power losses. To cope with this problem, the optimal integration of distributed generators (DGs) is proving to be efficient and sustainable. In this context, this paper investigates the minimization of active losses and the improvement of voltage profile through the integration of Multiple DGs in the IEEE 33-bus radial distribution system (RDS). The study aims to determine the optimal locations and sizes of l to 7 DGs to be integrated, in the case of unity power factor (UPF-DG) and optimal power factor (OPF-DG). The results are evaluated in a comparative study between three meta-heuristic optimization methods, namely Improved Cuckoo Search Algorithm (ICCSA), Improved Grey Wolf optimizer (IGWO), and a Chaotic-based Neural Network Algorithm (CNNA). In summary, CNNA outperforms the other algorithms mentioned above by increasing the problem dimension. Indeed, the total active loss reduction can reach 9S.27% by integrating seven OPF-DGs. On the opposite, poor results are generated by ICCSA.","PeriodicalId":426665,"journal":{"name":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Systems and Computer Vision (ISCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCV54655.2022.9806131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the increasing electricity demand, the distribution network is becoming more and more uncontrollable and subject to higher power losses. To cope with this problem, the optimal integration of distributed generators (DGs) is proving to be efficient and sustainable. In this context, this paper investigates the minimization of active losses and the improvement of voltage profile through the integration of Multiple DGs in the IEEE 33-bus radial distribution system (RDS). The study aims to determine the optimal locations and sizes of l to 7 DGs to be integrated, in the case of unity power factor (UPF-DG) and optimal power factor (OPF-DG). The results are evaluated in a comparative study between three meta-heuristic optimization methods, namely Improved Cuckoo Search Algorithm (ICCSA), Improved Grey Wolf optimizer (IGWO), and a Chaotic-based Neural Network Algorithm (CNNA). In summary, CNNA outperforms the other algorithms mentioned above by increasing the problem dimension. Indeed, the total active loss reduction can reach 9S.27% by integrating seven OPF-DGs. On the opposite, poor results are generated by ICCSA.
元启发式方法在径向配电网多DG分配中的应用比较研究
随着电力需求的不断增加,配电网的不可控性越来越强,损耗也越来越大。为了解决这一问题,分布式发电机组(dg)的优化集成被证明是高效和可持续的。在此背景下,本文研究了在IEEE 33总线径向配电系统(RDS)中通过集成多个dg来最小化有功损耗和改善电压分布的方法。该研究旨在确定在单位功率因数(UPF-DG)和最优功率因数(OPF-DG)的情况下集成1至7个dg的最佳位置和尺寸。通过对改进布谷鸟搜索算法(ICCSA)、改进灰狼优化器(IGWO)和基于混沌的神经网络算法(CNNA)三种元启发式优化方法的比较研究,对结果进行了评价。综上所述,CNNA通过增加问题维数来优于上述其他算法。的确,总的主动损耗降低可以达到9S。通过集成7个opf - dg。相反,ICCSA产生的结果很差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信