MEP-Based Channel Estimation under Complex Communication Environment

Zhengyang Hu, J. Xue, Deyu Meng, Qian Zhao, Zongben Xu
{"title":"MEP-Based Channel Estimation under Complex Communication Environment","authors":"Zhengyang Hu, J. Xue, Deyu Meng, Qian Zhao, Zongben Xu","doi":"10.1109/ICC40277.2020.9149354","DOIUrl":null,"url":null,"abstract":"In this paper, we study the channel state information (CSI) estimation by utilizing maximum entropy principle (MEP) and noise modeling method. The new model can not only represent the characters of the complex communication environment, but can also adjust itself according to the environment by using machine learning. In addition, a new iteration algorithm is presented to derive numerical results. Adaptive parameters learning and features choosing capability make the proposed method outperform the existing methods. The accuracy of estimation is verified by the Monte Carlo simulations.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9149354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we study the channel state information (CSI) estimation by utilizing maximum entropy principle (MEP) and noise modeling method. The new model can not only represent the characters of the complex communication environment, but can also adjust itself according to the environment by using machine learning. In addition, a new iteration algorithm is presented to derive numerical results. Adaptive parameters learning and features choosing capability make the proposed method outperform the existing methods. The accuracy of estimation is verified by the Monte Carlo simulations.
复杂通信环境下基于mep的信道估计
本文利用最大熵原理和噪声建模方法对信道状态信息(CSI)估计进行了研究。该模型不仅能够反映复杂通信环境的特征,而且能够利用机器学习技术根据环境进行自我调整。此外,还提出了一种新的迭代算法来推导数值结果。自适应参数学习和特征选择能力使该方法优于现有方法。通过蒙特卡罗仿真验证了估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信