Peramalan Penjualan Kendaraan Mobil Segmen B2B dengan Metode Regresi Linear Berganda, Jaringan Saraf Tiruan dan Jaringan Saraf Tiruan – Algoritma Genetika

Muhammad Agung Nugraha, F. Farizal, Djoko Sihono Gabriel
{"title":"Peramalan Penjualan Kendaraan Mobil Segmen B2B dengan Metode Regresi Linear Berganda, Jaringan Saraf Tiruan dan Jaringan Saraf Tiruan – Algoritma Genetika","authors":"Muhammad Agung Nugraha, F. Farizal, Djoko Sihono Gabriel","doi":"10.29303/emj.v3i2.80","DOIUrl":null,"url":null,"abstract":"This study aims to create an effective forecasting model in predicting sales of car products in the B2B segment (Business to Business) to obtain estimates of product sales in the future. This research uses multiple linear regression and artificial neural networks that are optimized by genetic algorithms. Forecasting factors for car sales are generally issued by total national car sales, the Consumer Price Index, the Consumer Confidence Index, the Inflation Rate, Gross Domestic Product (GDP), and Fuel Oil Price. The author has also gotten the factors that play a role in the sale of B2B segment by diverting the survey to 106 DMU (Decision Making Unit) who decide to purchase cars in their company. Then we evaluate the results of the questionnaire in training data and simulations on the Artificial Neural Network. Optimized Artificial Neural Networks with Genetic Algorithms can improve B2B segment car sales' accuracy when comparing error values in the ordinary Artificial Neural Network and Multiple Linear Regression.","PeriodicalId":281429,"journal":{"name":"EIGEN MATHEMATICS JOURNAL","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EIGEN MATHEMATICS JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/emj.v3i2.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study aims to create an effective forecasting model in predicting sales of car products in the B2B segment (Business to Business) to obtain estimates of product sales in the future. This research uses multiple linear regression and artificial neural networks that are optimized by genetic algorithms. Forecasting factors for car sales are generally issued by total national car sales, the Consumer Price Index, the Consumer Confidence Index, the Inflation Rate, Gross Domestic Product (GDP), and Fuel Oil Price. The author has also gotten the factors that play a role in the sale of B2B segment by diverting the survey to 106 DMU (Decision Making Unit) who decide to purchase cars in their company. Then we evaluate the results of the questionnaire in training data and simulations on the Artificial Neural Network. Optimized Artificial Neural Networks with Genetic Algorithms can improve B2B segment car sales' accuracy when comparing error values in the ordinary Artificial Neural Network and Multiple Linear Regression.
汽车的销售模型是B2B段,采用模拟神经网络和模拟神经网络——基因算法
本研究旨在建立一个有效的预测模型,预测汽车产品在B2B细分市场(Business to Business)的销售情况,以获得对未来产品销售的估计。本研究采用多元线性回归和遗传算法优化的人工神经网络。汽车销售的预测因素通常由全国汽车总销量、消费者价格指数、消费者信心指数、通货膨胀率、国内生产总值(GDP)和燃料油价格发布。作者还将调查对象转移到106个决定在公司购买汽车的决策单位(DMU),得出了影响B2B细分市场销售的因素。然后在人工神经网络的训练数据和仿真中评估问卷的结果。将传统人工神经网络与多元线性回归的误差值进行比较,采用遗传算法优化的人工神经网络可以提高B2B细分市场汽车销售的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信