Data Analysis and Friendship Prediction for Twitch Streamers

Elham Azizi, Loutfouz Zaman
{"title":"Data Analysis and Friendship Prediction for Twitch Streamers","authors":"Elham Azizi, Loutfouz Zaman","doi":"10.1109/GEM56474.2022.10017732","DOIUrl":null,"url":null,"abstract":"Designing recommendation systems for social networks is a common practice, and live-streaming platforms are not an exception. However, due to data and processing limitations not much work has been done to analyze these networks. In this paper, we analyzed a Twitch network gamers dataset and designed a new recommendation framework based on the specific characteristics of this dataset. The framework consists of three different layers: data, interest, and recommendation layer, each considering specific tasks. The results show the effectiveness of these friendship connection predictions among users.","PeriodicalId":200252,"journal":{"name":"2022 IEEE Games, Entertainment, Media Conference (GEM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Games, Entertainment, Media Conference (GEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEM56474.2022.10017732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing recommendation systems for social networks is a common practice, and live-streaming platforms are not an exception. However, due to data and processing limitations not much work has been done to analyze these networks. In this paper, we analyzed a Twitch network gamers dataset and designed a new recommendation framework based on the specific characteristics of this dataset. The framework consists of three different layers: data, interest, and recommendation layer, each considering specific tasks. The results show the effectiveness of these friendship connection predictions among users.
数据分析和友谊预测抽搐流
为社交网络设计推荐系统是一种常见的做法,直播平台也不例外。然而,由于数据和处理的限制,对这些网络进行分析的工作并不多。在本文中,我们分析了Twitch网络玩家数据集,并基于该数据集的具体特征设计了一个新的推荐框架。该框架由三个不同的层组成:数据层、兴趣层和推荐层,每个层都考虑特定的任务。结果表明,这些友情连接预测在用户中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信