About the Equivalence Between Complex-Valued and Real-Valued Fully Connected Neural Networks - Application to Polinsar Images

J. A. Barrachina, C. Ren, G. Vieillard, C. Morisseau, J. Ovarlez
{"title":"About the Equivalence Between Complex-Valued and Real-Valued Fully Connected Neural Networks - Application to Polinsar Images","authors":"J. A. Barrachina, C. Ren, G. Vieillard, C. Morisseau, J. Ovarlez","doi":"10.1109/mlsp52302.2021.9596542","DOIUrl":null,"url":null,"abstract":"In this paper we provide an exhaustive statistical comparison between Complex-Valued MultiLayer Perceptron (CV-MLP) and Real-Valued MultiLayer Perceptron (RV-MLP) on Oberpfaffenhofen Polarimetric and Interferometric Synthetic Aperture Radar (PolInSAR) database. In order to compare both networks in a fair manner, the need to define the equivalence between the models arises. A novel definition for an equivalent Real-Valued Neural Network (RVNN) is proposed in terms of its real-valued trainable parameters that maintain the aspect ratio and analyze its dynamics. We show that CV-MLP gets a slightly better statistical performance for classification on the PolInSAR image than a capacity equivalent RV-MLP.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper we provide an exhaustive statistical comparison between Complex-Valued MultiLayer Perceptron (CV-MLP) and Real-Valued MultiLayer Perceptron (RV-MLP) on Oberpfaffenhofen Polarimetric and Interferometric Synthetic Aperture Radar (PolInSAR) database. In order to compare both networks in a fair manner, the need to define the equivalence between the models arises. A novel definition for an equivalent Real-Valued Neural Network (RVNN) is proposed in terms of its real-valued trainable parameters that maintain the aspect ratio and analyze its dynamics. We show that CV-MLP gets a slightly better statistical performance for classification on the PolInSAR image than a capacity equivalent RV-MLP.
关于复值与实值全连接神经网络的等价性——在Polinsar图像中的应用
本文对复值多层感知器(CV-MLP)和实值多层感知器(RV-MLP)在Oberpfaffenhofen偏振干涉合成孔径雷达(PolInSAR)数据库中的性能进行了详尽的统计比较。为了公平地比较这两个网络,需要定义模型之间的等价性。提出了一种新的等效实值神经网络(RVNN)的定义,该网络的实值可训练参数能够维持长径比并分析其动态特性。我们表明,CV-MLP在PolInSAR图像上的分类统计性能略好于容量相等的RV-MLP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信