Achieving Scalable Model-Free Demand Response in Charging an Electric Vehicle Fleet with Reinforcement Learning

Nasrin Sadeghianpourhamami, Johannes Deleu, Chris Develder
{"title":"Achieving Scalable Model-Free Demand Response in Charging an Electric Vehicle Fleet with Reinforcement Learning","authors":"Nasrin Sadeghianpourhamami, Johannes Deleu, Chris Develder","doi":"10.1145/3208903.3212042","DOIUrl":null,"url":null,"abstract":"To achieve coordinated electric vehicle (EV) charging with demand response (DR), a model-free approach using reinforcement learning (RL) is an attractive proposition. Using RL, the DR algorithm is defined as a Markov decision process (MDP). Initial work in this area comprises algorithms to control just one EV at a time, because of scalability challenges when taking coupling between EVs into account. In this paper, we propose a novel MDP definition for charging an EV fleet. More specifically, we propose (1) a relatively compact aggregate state and action space representation, and (2) a batch RL algorithm (i.e., an instance of fitted Q-iteration, FQI) to learn the optimal EV charging policy.","PeriodicalId":400170,"journal":{"name":"Proceedings of the Ninth International Conference on Future Energy Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208903.3212042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

To achieve coordinated electric vehicle (EV) charging with demand response (DR), a model-free approach using reinforcement learning (RL) is an attractive proposition. Using RL, the DR algorithm is defined as a Markov decision process (MDP). Initial work in this area comprises algorithms to control just one EV at a time, because of scalability challenges when taking coupling between EVs into account. In this paper, we propose a novel MDP definition for charging an EV fleet. More specifically, we propose (1) a relatively compact aggregate state and action space representation, and (2) a batch RL algorithm (i.e., an instance of fitted Q-iteration, FQI) to learn the optimal EV charging policy.
利用强化学习实现电动汽车充电中可扩展的无模型需求响应
为了实现具有需求响应(DR)的协调电动汽车(EV)充电,使用强化学习(RL)的无模型方法是一个有吸引力的提议。利用RL, DR算法被定义为马尔可夫决策过程(MDP)。该领域的初始工作包括一次只控制一辆电动汽车的算法,因为考虑到电动汽车之间的耦合时存在可扩展性挑战。在本文中,我们提出了一种新的针对电动汽车车队充电的MDP定义。更具体地说,我们提出了(1)一个相对紧凑的聚合状态和动作空间表示,(2)一个批处理RL算法(即拟合q -迭代的一个实例,FQI)来学习最优的电动汽车充电策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信