Short Text Topic Modeling to Identify Trends on Wearable Bio-Sensors in Different Media Type

Juhee Bae, Jesper Havsol, M. Karpefors, Alexander Karlsson, G. Mathiason
{"title":"Short Text Topic Modeling to Identify Trends on Wearable Bio-Sensors in Different Media Type","authors":"Juhee Bae, Jesper Havsol, M. Karpefors, Alexander Karlsson, G. Mathiason","doi":"10.1109/ISCBI.2018.00027","DOIUrl":null,"url":null,"abstract":"The technology and techniques for bio-sensors are rapidly evolving. Accordingly, there is significant business interest to identify upcoming technologies and new targets for the near future. Text information from internet reflects much of the recent information and public interests that help to understand the trend of a certain field. Thus, we utilize Dirichlet process topic modeling on different media sources containing short text (e.g., blogs, news) which is able to self-adapt the learned topic space to the data. We share the observations from the domain experts on the results derived from topic modeling on wearable biosensors from multiple media sources over more than eight years. We analyze the topics on wearable devices, forecast and market analysis, and bio-sensing techniques found from our method.","PeriodicalId":153800,"journal":{"name":"2018 6th International Symposium on Computational and Business Intelligence (ISCBI)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Symposium on Computational and Business Intelligence (ISCBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The technology and techniques for bio-sensors are rapidly evolving. Accordingly, there is significant business interest to identify upcoming technologies and new targets for the near future. Text information from internet reflects much of the recent information and public interests that help to understand the trend of a certain field. Thus, we utilize Dirichlet process topic modeling on different media sources containing short text (e.g., blogs, news) which is able to self-adapt the learned topic space to the data. We share the observations from the domain experts on the results derived from topic modeling on wearable biosensors from multiple media sources over more than eight years. We analyze the topics on wearable devices, forecast and market analysis, and bio-sensing techniques found from our method.
短文本主题建模识别可穿戴生物传感器在不同媒体类型中的趋势
生物传感器的技术和工艺正在迅速发展。因此,确定即将到来的技术和不久的将来的新目标具有重要的商业利益。来自互联网的文本信息反映了最近的信息和公共利益,有助于了解某一领域的趋势。因此,我们在包含短文本(例如,博客,新闻)的不同媒体源上使用Dirichlet过程主题建模,它能够自适应学习到的主题空间。我们分享了领域专家对可穿戴生物传感器的主题建模结果的观察结果,这些结果来自多个媒体来源,超过八年。我们分析了可穿戴设备的主题,预测和市场分析,以及从我们的方法中发现的生物传感技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信