Algebra, coherent states, generalized Hermite polynomials, and path integrals for fractional statistics—Interpolating from fermions to bosons

S. Ramakrishna
{"title":"Algebra, coherent states, generalized Hermite polynomials, and path integrals for fractional statistics—Interpolating from fermions to bosons","authors":"S. Ramakrishna","doi":"10.1063/5.0022407","DOIUrl":null,"url":null,"abstract":"This article develops the algebraic structure that results from the $\\theta$-commutator $\\alpha \\beta - e^{i \\theta} \\beta \\alpha = 1 $ that provides a continuous interpolation between the Clifford and Heisenberg algebras. We first demonstrate the most general geometrical picture, applicable to all values of $N$. After listing the properties of this Hilbert space, we study the generalized coherent states that result when $\\xi^N=0$, for $N \\ge 2$. We also solve the generalized harmonic oscillator problem and derive generalized versions of the Hermite polynomials for general $N$. Some remarks are made to connect this study to the case of anyons. This study represents the first steps towards developing an anyonic field theory.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0022407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article develops the algebraic structure that results from the $\theta$-commutator $\alpha \beta - e^{i \theta} \beta \alpha = 1 $ that provides a continuous interpolation between the Clifford and Heisenberg algebras. We first demonstrate the most general geometrical picture, applicable to all values of $N$. After listing the properties of this Hilbert space, we study the generalized coherent states that result when $\xi^N=0$, for $N \ge 2$. We also solve the generalized harmonic oscillator problem and derive generalized versions of the Hermite polynomials for general $N$. Some remarks are made to connect this study to the case of anyons. This study represents the first steps towards developing an anyonic field theory.
代数,相干态,广义埃尔米特多项式,以及分数统计的路径积分——从费米子到玻色子的插值
本文发展了由$\theta$ -换向子$\alpha \beta - e^{i \theta} \beta \alpha = 1 $得到的代数结构,它提供了Clifford代数和Heisenberg代数之间的连续插值。我们首先展示最一般的几何图形,适用于$N$的所有值。在列出这个希尔伯特空间的性质之后,我们研究了当$\xi^N=0$时产生的广义相干态,对于$N \ge 2$。我们还解决了广义谐振子问题,并推导了广义$N$的Hermite多项式的广义形式。有些评论是为了把这项研究与任何人的情况联系起来。这项研究代表了发展任意子场论的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信