{"title":"Algebra, coherent states, generalized Hermite polynomials, and path integrals for fractional statistics—Interpolating from fermions to bosons","authors":"S. Ramakrishna","doi":"10.1063/5.0022407","DOIUrl":null,"url":null,"abstract":"This article develops the algebraic structure that results from the $\\theta$-commutator $\\alpha \\beta - e^{i \\theta} \\beta \\alpha = 1 $ that provides a continuous interpolation between the Clifford and Heisenberg algebras. We first demonstrate the most general geometrical picture, applicable to all values of $N$. After listing the properties of this Hilbert space, we study the generalized coherent states that result when $\\xi^N=0$, for $N \\ge 2$. We also solve the generalized harmonic oscillator problem and derive generalized versions of the Hermite polynomials for general $N$. Some remarks are made to connect this study to the case of anyons. This study represents the first steps towards developing an anyonic field theory.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0022407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article develops the algebraic structure that results from the $\theta$-commutator $\alpha \beta - e^{i \theta} \beta \alpha = 1 $ that provides a continuous interpolation between the Clifford and Heisenberg algebras. We first demonstrate the most general geometrical picture, applicable to all values of $N$. After listing the properties of this Hilbert space, we study the generalized coherent states that result when $\xi^N=0$, for $N \ge 2$. We also solve the generalized harmonic oscillator problem and derive generalized versions of the Hermite polynomials for general $N$. Some remarks are made to connect this study to the case of anyons. This study represents the first steps towards developing an anyonic field theory.