{"title":"Load Controller for a Stand Alone Variable Speed Wind Energy Conversion System with Energy Storage","authors":"D. Cloete, S. Chowdhury","doi":"10.1109/PowerAfrica52236.2021.9543145","DOIUrl":null,"url":null,"abstract":"This paper reports on a load controller for a standalone wind power plant with storage. The controller incorporates a maximum power point tracking (MPPT) algorithm for always capturing maximum energy from wind flow. The load is modelled as a three-phase resistor and is interfaced with the variable speed wind turbine and permanent magnet synchronous generator (PMSG) through a diode bridge rectifier, DC-DC converters, and a three-phase voltage source inverter. Maximum power point tracking is implemented by varying the duty cycle of a boost converter with the changes in the DC-link power and voltage. The energy storage system comprises a lead-acid battery bank that stores excess energy and supplies the load when wind generation cannot sufficiently meet the load demand. The three-phase voltage source inverter converts DC voltage to AC and employs vector control to sustain a constant output voltage across the load. Modeling and simulation are performed in MATLAB/Simulink for varying wind speeds and loading scenarios. The simulation results demonstrated that the controller performs well under these conditions.","PeriodicalId":370999,"journal":{"name":"2021 IEEE PES/IAS PowerAfrica","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica52236.2021.9543145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper reports on a load controller for a standalone wind power plant with storage. The controller incorporates a maximum power point tracking (MPPT) algorithm for always capturing maximum energy from wind flow. The load is modelled as a three-phase resistor and is interfaced with the variable speed wind turbine and permanent magnet synchronous generator (PMSG) through a diode bridge rectifier, DC-DC converters, and a three-phase voltage source inverter. Maximum power point tracking is implemented by varying the duty cycle of a boost converter with the changes in the DC-link power and voltage. The energy storage system comprises a lead-acid battery bank that stores excess energy and supplies the load when wind generation cannot sufficiently meet the load demand. The three-phase voltage source inverter converts DC voltage to AC and employs vector control to sustain a constant output voltage across the load. Modeling and simulation are performed in MATLAB/Simulink for varying wind speeds and loading scenarios. The simulation results demonstrated that the controller performs well under these conditions.