{"title":"Differential Evolution with Self-Adaptation","authors":"J. Brest","doi":"10.4018/978-1-59904-849-9.CH074","DOIUrl":null,"url":null,"abstract":"Many practical engineering applications can be formulated as a global optimization problem, in which objective function has many local minima, and derivatives of the objective function are unavailable. Differential Evolution (DE) is a floating-point encoding evolutionary algorithm for global optimization over continuous spaces (Storn & Price, 1997) (Liu & Lampinen, 2005) (Price, Storn & Lampinen, 2005) (Feoktistov, 2006). Nowadays it is used as a powerful global optimization method within a wide range of research areas. Recent researches indicate that self-adaptive DE algorithms are considerably better than the original DE algorithm. The necessity of changing control parameters during the optimization process is also confirmed based on the experiments in (Brest, Greiner, Boskovic, Mernik, Žumer, 2006a). DE with self-adaptive control parameters has already been presented in (Brest et al., 2006a). This chapter presents self-adaptive approaches that were recently proposed for control parameters in DE algorithm.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Many practical engineering applications can be formulated as a global optimization problem, in which objective function has many local minima, and derivatives of the objective function are unavailable. Differential Evolution (DE) is a floating-point encoding evolutionary algorithm for global optimization over continuous spaces (Storn & Price, 1997) (Liu & Lampinen, 2005) (Price, Storn & Lampinen, 2005) (Feoktistov, 2006). Nowadays it is used as a powerful global optimization method within a wide range of research areas. Recent researches indicate that self-adaptive DE algorithms are considerably better than the original DE algorithm. The necessity of changing control parameters during the optimization process is also confirmed based on the experiments in (Brest, Greiner, Boskovic, Mernik, Žumer, 2006a). DE with self-adaptive control parameters has already been presented in (Brest et al., 2006a). This chapter presents self-adaptive approaches that were recently proposed for control parameters in DE algorithm.