Differential Evolution with Self-Adaptation

J. Brest
{"title":"Differential Evolution with Self-Adaptation","authors":"J. Brest","doi":"10.4018/978-1-59904-849-9.CH074","DOIUrl":null,"url":null,"abstract":"Many practical engineering applications can be formulated as a global optimization problem, in which objective function has many local minima, and derivatives of the objective function are unavailable. Differential Evolution (DE) is a floating-point encoding evolutionary algorithm for global optimization over continuous spaces (Storn & Price, 1997) (Liu & Lampinen, 2005) (Price, Storn & Lampinen, 2005) (Feoktistov, 2006). Nowadays it is used as a powerful global optimization method within a wide range of research areas. Recent researches indicate that self-adaptive DE algorithms are considerably better than the original DE algorithm. The necessity of changing control parameters during the optimization process is also confirmed based on the experiments in (Brest, Greiner, Boskovic, Mernik, Žumer, 2006a). DE with self-adaptive control parameters has already been presented in (Brest et al., 2006a). This chapter presents self-adaptive approaches that were recently proposed for control parameters in DE algorithm.","PeriodicalId":320314,"journal":{"name":"Encyclopedia of Artificial Intelligence","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-59904-849-9.CH074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Many practical engineering applications can be formulated as a global optimization problem, in which objective function has many local minima, and derivatives of the objective function are unavailable. Differential Evolution (DE) is a floating-point encoding evolutionary algorithm for global optimization over continuous spaces (Storn & Price, 1997) (Liu & Lampinen, 2005) (Price, Storn & Lampinen, 2005) (Feoktistov, 2006). Nowadays it is used as a powerful global optimization method within a wide range of research areas. Recent researches indicate that self-adaptive DE algorithms are considerably better than the original DE algorithm. The necessity of changing control parameters during the optimization process is also confirmed based on the experiments in (Brest, Greiner, Boskovic, Mernik, Žumer, 2006a). DE with self-adaptive control parameters has already been presented in (Brest et al., 2006a). This chapter presents self-adaptive approaches that were recently proposed for control parameters in DE algorithm.
自我适应的差异进化
许多实际工程应用可以表述为一个全局优化问题,其中目标函数有许多局部极小值,并且目标函数的导数不可用。差分进化(DE)是一种浮点编码进化算法,用于连续空间上的全局优化(Storn & Price, 1997) (Liu & Lampinen, 2005) (Price, Storn & Lampinen, 2005) (Feoktistov, 2006)。目前,它作为一种强大的全局优化方法在广泛的研究领域中得到应用。近年来的研究表明,自适应DE算法明显优于原始DE算法。在(Brest, Greiner, Boskovic, Mernik, Žumer, 2006a)的实验中也证实了在优化过程中改变控制参数的必要性。具有自适应控制参数的DE已经在(Brest et al., 2006a)中提出。本章介绍了最近提出的DE算法中控制参数的自适应方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信