Correction: An optimization framework for analyzing nonlinear stability due to sparse finite-amplitude perturbations

Alexander L. Heide, Maziar S. Hemati
{"title":"Correction: An optimization framework for analyzing nonlinear stability due to sparse finite-amplitude perturbations","authors":"Alexander L. Heide, Maziar S. Hemati","doi":"10.2514/6.2023-4258.c1","DOIUrl":null,"url":null,"abstract":"In this paper, we present an optimization framework for computing sparse and spatially-localized finite-amplitude perturbations that maximize transient growth in nonlinear systems. A variational approach is used to derive the first-order necessary conditions for optimality, which form the basis of our iterative direct-adjoint looping numerical solution algorithm. The method is demonstrated on an illustrative 2-state dynamical system that possesses key features of the incompressible Navier-Stokes equations. We then apply the method to analyze a reduced-order model of a sinusoidal shear flow at 𝑅𝑒 = 20 . Our results establish the power of the proposed optimization framework for revealing dominant modal interactions and sparse perturbation mechanisms for transient growth and instability in fluid flows.","PeriodicalId":403570,"journal":{"name":"AIAA AVIATION 2023 Forum","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA AVIATION 2023 Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2023-4258.c1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present an optimization framework for computing sparse and spatially-localized finite-amplitude perturbations that maximize transient growth in nonlinear systems. A variational approach is used to derive the first-order necessary conditions for optimality, which form the basis of our iterative direct-adjoint looping numerical solution algorithm. The method is demonstrated on an illustrative 2-state dynamical system that possesses key features of the incompressible Navier-Stokes equations. We then apply the method to analyze a reduced-order model of a sinusoidal shear flow at 𝑅𝑒 = 20 . Our results establish the power of the proposed optimization framework for revealing dominant modal interactions and sparse perturbation mechanisms for transient growth and instability in fluid flows.
修正:用于分析稀疏有限振幅扰动引起的非线性稳定性的优化框架
在本文中,我们提出了一个优化框架,用于计算非线性系统中最大化瞬态增长的稀疏和空间局部有限振幅扰动。采用变分方法推导了最优性的一阶必要条件,这些条件构成了迭代直接伴随循环数值解算法的基础。该方法在一个具有不可压缩Navier-Stokes方程关键特征的2态动力系统上得到了验证。然后,我们应用该方法分析了𝑅𝑒= 20时正弦剪切流的降阶模型。我们的结果建立了所提出的优化框架的力量,揭示了流体流动中瞬态增长和不稳定的主要模态相互作用和稀疏摄动机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信