Information extraction from HTML pages and its integration

K. Itai, A. Takasu, J. Adachi
{"title":"Information extraction from HTML pages and its integration","authors":"K. Itai, A. Takasu, J. Adachi","doi":"10.1109/SAINTW.2003.1210172","DOIUrl":null,"url":null,"abstract":"We propose a method for transforming HTML tables that have different structures into a common XML list structure and integrating them. This integration enables us to browse and compare all information in separate HTML pages uniformly. This paper focuses on the tasks of information extraction from tables and its data categorization. For this purpose, we compare three algorithms: (I) data classification using a support vector machine, (II) table structure estimation and data categorization using a hidden Markov model, and (III) data classification by the combination of a support vector machine and hidden Markov model. Finally, we report the experimental results.","PeriodicalId":131526,"journal":{"name":"2003 Symposium on Applications and the Internet Workshops, 2003. Proceedings.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Symposium on Applications and the Internet Workshops, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAINTW.2003.1210172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a method for transforming HTML tables that have different structures into a common XML list structure and integrating them. This integration enables us to browse and compare all information in separate HTML pages uniformly. This paper focuses on the tasks of information extraction from tables and its data categorization. For this purpose, we compare three algorithms: (I) data classification using a support vector machine, (II) table structure estimation and data categorization using a hidden Markov model, and (III) data classification by the combination of a support vector machine and hidden Markov model. Finally, we report the experimental results.
从HTML页面中提取信息及其集成
我们提出了一种将具有不同结构的HTML表转换为通用XML列表结构并将其集成的方法。这种集成使我们能够统一地浏览和比较单独HTML页面中的所有信息。本文重点研究了从表中提取信息及其数据分类的任务。为此,我们比较了三种算法:(I)使用支持向量机的数据分类,(II)使用隐马尔可夫模型的表结构估计和数据分类,以及(III)使用支持向量机和隐马尔可夫模型相结合的数据分类。最后,我们报告了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信