Counting module quantifiers on finite linearly ordered trees

Juha Nurmonen
{"title":"Counting module quantifiers on finite linearly ordered trees","authors":"Juha Nurmonen","doi":"10.1109/LICS.1996.561465","DOIUrl":null,"url":null,"abstract":"We give a combinatorial method for proving elementary equivalence in first-order logic FO with counting module n quantifiers D/sub n/. Inexpressibility results for FO(D/sub n/) with built-in linear order are also considered. We show that certain divisibility properties of word models are not definable in FO(D/sub n/). We also show that the height of complete n-ary trees cannot be expressed in FO(D/sub n/) with linear order. Interpreting the predicate y=nx as a complete n-ary tree, we show that the predicate y=(n+1)x cannot be defined in FO(D/sub n/) with linear order. This proves the conjecture of Niwinski and Stolboushkin (1993). We also discuss connection between our results and the well-known open problem in circuit complexity theory, whether ACC=NC/sup 1/.","PeriodicalId":382663,"journal":{"name":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1996.561465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We give a combinatorial method for proving elementary equivalence in first-order logic FO with counting module n quantifiers D/sub n/. Inexpressibility results for FO(D/sub n/) with built-in linear order are also considered. We show that certain divisibility properties of word models are not definable in FO(D/sub n/). We also show that the height of complete n-ary trees cannot be expressed in FO(D/sub n/) with linear order. Interpreting the predicate y=nx as a complete n-ary tree, we show that the predicate y=(n+1)x cannot be defined in FO(D/sub n/) with linear order. This proves the conjecture of Niwinski and Stolboushkin (1993). We also discuss connection between our results and the well-known open problem in circuit complexity theory, whether ACC=NC/sup 1/.
有限线性有序树上的模块量词计数
给出了一阶逻辑FO具有计数模n量词D/sub n/的初等等价的组合证明方法。还考虑了具有内建线性阶的FO(D/sub n/)的不可表达性结果。我们证明了在FO(D/sub n/)中词模型的某些可整除性是不可定义的。我们还证明了完全n元树的高度不能用线性顺序的FO(D/sub n/)来表示。将谓词y=nx解释为一个完整的n元树,我们证明谓词y=(n+1)x不能在线性阶的FO(D/sub n/)中定义。这证明了Niwinski和Stolboushkin(1993)的猜想。我们还讨论了我们的结果与电路复杂性理论中著名的开放问题ACC是否=NC/sup 1/之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信