Adaptive Neural Network Based Intelligent Control for Unmanned Aerial Systems with System Uncertainties and Disturbances

Mohammad Jafari, Hao Xu
{"title":"Adaptive Neural Network Based Intelligent Control for Unmanned Aerial Systems with System Uncertainties and Disturbances","authors":"Mohammad Jafari, Hao Xu","doi":"10.1109/ICUAS.2018.8453450","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive neural network based intelligent controller to stabilize the Unmanned Aircraft Systems (UAS) under complex environment including system uncertainties, unknown noise and/or disturbance. The proposed adaptive neural network controller is based on a class of artificial neural network, named Radial Basis Function (RBF) networks. Firstly, we develop a neural network based identifier that can handle the unknown dynamics and uncertainties in the system. Then, a neural network based controller is generated based on both the identified model of the system and the linear or nonlinear controller. The linear or nonlinear controller is utilized to ensure the stability of the system during its online training phase. The learning capability of the proposed intelligent controller makes it a promising approach to take system uncertainties, noises and/or disturbances into account. The satisfactory performance of the proposed intelligent controller is validated based on the computer based simulation results of a benchmark UAS with system uncertainties and disturbances, such as wind gusts disturbance.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes an adaptive neural network based intelligent controller to stabilize the Unmanned Aircraft Systems (UAS) under complex environment including system uncertainties, unknown noise and/or disturbance. The proposed adaptive neural network controller is based on a class of artificial neural network, named Radial Basis Function (RBF) networks. Firstly, we develop a neural network based identifier that can handle the unknown dynamics and uncertainties in the system. Then, a neural network based controller is generated based on both the identified model of the system and the linear or nonlinear controller. The linear or nonlinear controller is utilized to ensure the stability of the system during its online training phase. The learning capability of the proposed intelligent controller makes it a promising approach to take system uncertainties, noises and/or disturbances into account. The satisfactory performance of the proposed intelligent controller is validated based on the computer based simulation results of a benchmark UAS with system uncertainties and disturbances, such as wind gusts disturbance.
具有系统不确定性和干扰的无人机系统自适应神经网络智能控制
提出了一种基于自适应神经网络的智能控制器,用于在复杂环境下稳定无人机系统,包括系统不确定性、未知噪声和/或干扰。提出的自适应神经网络控制器是基于一类人工神经网络,称为径向基函数(RBF)网络。首先,我们开发了一种基于神经网络的辨识器,可以处理系统中的未知动态和不确定性。然后,基于辨识出的系统模型和线性或非线性控制器生成基于神经网络的控制器。利用线性或非线性控制器保证系统在在线训练阶段的稳定性。所提出的智能控制器的学习能力使其成为一种考虑系统不确定性、噪声和/或干扰的有前途的方法。基于一个具有系统不确定性和阵风扰动的基准无人机的计算机仿真结果,验证了所提智能控制器令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信