{"title":"Supporting Differentiated Services in Computers via Programmable Architecture for Resourcing-on-Demand (PARD)","authors":"Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni Xu, Zhicheng Yao, Yun Chen, Haibin Wang, Lixin Zhang, Yungang Bao","doi":"10.1145/2694344.2694382","DOIUrl":null,"url":null,"abstract":"This paper presents PARD, a programmable architecture for resourcing-on-demand that provides a new programming interface to convey an application's high-level information like quality-of-service requirements to the hardware. PARD enables new functionalities like fully hardware-supported virtualization and differentiated services in computers. PARD is inspired by the observation that a computer is inherently a network in which hardware components communicate via packets (e.g., over the NoC or PCIe). We apply principles of software-defined networking to this intra-computer network and address three major challenges. First, to deal with the semantic gap between high-level applications and underlying hardware packets, PARD attaches a high-level semantic tag (e.g., a virtual machine or thread ID) to each memory-access, I/O, or interrupt packet. Second, to make hardware components more manageable, PARD implements programmable control planes that can be integrated into various shared resources (e.g., cache, DRAM, and I/O devices) and can differentially process packets according to tag-based rules. Third, to facilitate programming, PARD abstracts all control planes as a device file tree to provide a uniform programming interface via which users create and apply tag-based rules. Full-system simulation results show that by co-locating latencycritical memcached applications with other workloads PARD can improve a four-core computer's CPU utilization by up to a factor of four without significantly increasing tail latency. FPGA emulation based on a preliminary RTL implementation demonstrates that the cache control plane introduces no extra latency and that the memory control plane can reduce queueing delay for high-priority memory-access requests by up to a factor of 5.6.","PeriodicalId":403247,"journal":{"name":"Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2694344.2694382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
This paper presents PARD, a programmable architecture for resourcing-on-demand that provides a new programming interface to convey an application's high-level information like quality-of-service requirements to the hardware. PARD enables new functionalities like fully hardware-supported virtualization and differentiated services in computers. PARD is inspired by the observation that a computer is inherently a network in which hardware components communicate via packets (e.g., over the NoC or PCIe). We apply principles of software-defined networking to this intra-computer network and address three major challenges. First, to deal with the semantic gap between high-level applications and underlying hardware packets, PARD attaches a high-level semantic tag (e.g., a virtual machine or thread ID) to each memory-access, I/O, or interrupt packet. Second, to make hardware components more manageable, PARD implements programmable control planes that can be integrated into various shared resources (e.g., cache, DRAM, and I/O devices) and can differentially process packets according to tag-based rules. Third, to facilitate programming, PARD abstracts all control planes as a device file tree to provide a uniform programming interface via which users create and apply tag-based rules. Full-system simulation results show that by co-locating latencycritical memcached applications with other workloads PARD can improve a four-core computer's CPU utilization by up to a factor of four without significantly increasing tail latency. FPGA emulation based on a preliminary RTL implementation demonstrates that the cache control plane introduces no extra latency and that the memory control plane can reduce queueing delay for high-priority memory-access requests by up to a factor of 5.6.