Digital VLSI implementation of a multi-precision neural network classifier

A. Bermak, D. Martinez
{"title":"Digital VLSI implementation of a multi-precision neural network classifier","authors":"A. Bermak, D. Martinez","doi":"10.1109/ICONIP.1999.845655","DOIUrl":null,"url":null,"abstract":"A systolic multi-precision digital VLSI classifier referred to as \"SysNeuro\" is presented. Unlike the usual VLSI implementation of classifiers, this hardware has been designed to achieve variable precision computations. A hardware reconfiguration is obtained by using switch elements to change the hardware connection between adjacent 4 bit neuron building blocks. With this reconfiguration concept it is possible to either increase the precision by pooling together adjacent cells or to increase the number of neurons for low levels of precision. Moreover, the design is easily programmable and can be configured to any artificial neural network (ANN) topology in order to cover various kinds of application. The chip integrates 16/8/4 neurons with a corresponding precision of 4/8/16 bits. A prototype has been successfully realized using 0.7 /spl mu/m CMOS technology.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.845655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A systolic multi-precision digital VLSI classifier referred to as "SysNeuro" is presented. Unlike the usual VLSI implementation of classifiers, this hardware has been designed to achieve variable precision computations. A hardware reconfiguration is obtained by using switch elements to change the hardware connection between adjacent 4 bit neuron building blocks. With this reconfiguration concept it is possible to either increase the precision by pooling together adjacent cells or to increase the number of neurons for low levels of precision. Moreover, the design is easily programmable and can be configured to any artificial neural network (ANN) topology in order to cover various kinds of application. The chip integrates 16/8/4 neurons with a corresponding precision of 4/8/16 bits. A prototype has been successfully realized using 0.7 /spl mu/m CMOS technology.
数字VLSI实现的一种多精度神经网络分类器
提出了一种收缩式多精度数字VLSI分类器“SysNeuro”。与通常的VLSI分类器实现不同,该硬件被设计为实现可变精度计算。通过使用开关元件改变相邻4位神经元构建块之间的硬件连接,实现硬件重构。有了这个重新配置的概念,可以通过汇集相邻的细胞来提高精度,也可以增加低精度水平的神经元数量。此外,该设计易于编程,可以配置为任何人工神经网络(ANN)拓扑结构,以覆盖各种应用。该芯片集成了16/8/4个神经元,相应的精度为4/8/16位。采用0.7 /spl mu/m CMOS技术成功实现了样机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信