Matching with quantum genetic algorithm and shape contexts

Khalil M. Mezghiche, K. Melkemi, S. Foufou
{"title":"Matching with quantum genetic algorithm and shape contexts","authors":"Khalil M. Mezghiche, K. Melkemi, S. Foufou","doi":"10.1109/AICCSA.2014.7073245","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to combine the shape context (SC) descriptor with quantum genetic algorithms (QGA) to define a new shape matching and retrieval method. The SC matching method is based on finding the best correspondence between two point sets. The proposed method uses the QGA to find the best configuration of sample points in order to achieve the best possible matching between the two shapes. This combination of SC and QGA leads to a better retrieval results based on our tests. The SC is a very powerful discriminative descriptor which is translation and scale invariant, but weak against rotation and flipping. In our proposed quantum shape context algorithm (QSC), we use the QGA to estimate the best orientation of the target shape to ensure the best matching for rotated and flipped shapes. The experimental results showed that our proposed QSC matching method is much powerful than the classic SC method for the retrieval of shapes with orientation changes.","PeriodicalId":412749,"journal":{"name":"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2014.7073245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose to combine the shape context (SC) descriptor with quantum genetic algorithms (QGA) to define a new shape matching and retrieval method. The SC matching method is based on finding the best correspondence between two point sets. The proposed method uses the QGA to find the best configuration of sample points in order to achieve the best possible matching between the two shapes. This combination of SC and QGA leads to a better retrieval results based on our tests. The SC is a very powerful discriminative descriptor which is translation and scale invariant, but weak against rotation and flipping. In our proposed quantum shape context algorithm (QSC), we use the QGA to estimate the best orientation of the target shape to ensure the best matching for rotated and flipped shapes. The experimental results showed that our proposed QSC matching method is much powerful than the classic SC method for the retrieval of shapes with orientation changes.
基于量子遗传算法和形状上下文的匹配
本文提出将形状上下文描述符(SC)与量子遗传算法(QGA)相结合,定义一种新的形状匹配与检索方法。SC匹配方法是基于寻找两个点集之间的最佳对应关系。该方法利用量子遗传算法寻找样本点的最佳配置,以实现两个形状之间的最佳匹配。基于我们的测试,这种SC和QGA的结合导致了更好的检索结果。SC是一个非常强大的判别描述子,它是平移和尺度不变的,但对旋转和翻转很弱。在我们提出的量子形状上下文算法(QSC)中,我们使用QGA来估计目标形状的最佳方向,以确保旋转和翻转形状的最佳匹配。实验结果表明,本文提出的QSC匹配方法对具有方向变化的形状的检索比传统的SC方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信