{"title":"Unnatural Selection: Seeing Human Intelligence in Artificial Creations","authors":"T. Veale","doi":"10.1515/jagi-2015-0002","DOIUrl":null,"url":null,"abstract":"Abstract As generative AI systems grow in sophistication, so too do our expectations of their outputs. For as automated systems acculturate themselves to ever larger sets of inspiring human examples, the more we expect them to produce human-quality outputs, and the greater our disappointment when they fall short. While our generative systems must embody some sense of what constitutes human creativity if their efforts are to be valued as creative by human judges, computers are not human, and need not go so far as to actively pretend to be human to be seen as creative. As discomfiting objects that reside at the boundary of two seemingly disjoint categories, creative machines arouse our sense of the uncanny, or what Freud memorably called the Unheimlich. Like a ventriloquist’s doll that finds its own voice, computers are free to blend the human and the non-human, to surprise us with their knowledge of our world and to discomfit with their detached, other-worldly perspectives on it. Nowhere is our embrace of the unnatural and the uncanny more evident than in the popularity of Twitterbots, automatic text generators on Twitter that are followed by humans precisely because they are non-human, and because their outputs so often seem meaningful yet unnatural. This paper evaluates a metaphor generator named @MetaphorMagnet, a Twitterbot that tempers the uncanny with aptness to yield results that are provocative but meaningful.","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jagi-2015-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Abstract As generative AI systems grow in sophistication, so too do our expectations of their outputs. For as automated systems acculturate themselves to ever larger sets of inspiring human examples, the more we expect them to produce human-quality outputs, and the greater our disappointment when they fall short. While our generative systems must embody some sense of what constitutes human creativity if their efforts are to be valued as creative by human judges, computers are not human, and need not go so far as to actively pretend to be human to be seen as creative. As discomfiting objects that reside at the boundary of two seemingly disjoint categories, creative machines arouse our sense of the uncanny, or what Freud memorably called the Unheimlich. Like a ventriloquist’s doll that finds its own voice, computers are free to blend the human and the non-human, to surprise us with their knowledge of our world and to discomfit with their detached, other-worldly perspectives on it. Nowhere is our embrace of the unnatural and the uncanny more evident than in the popularity of Twitterbots, automatic text generators on Twitter that are followed by humans precisely because they are non-human, and because their outputs so often seem meaningful yet unnatural. This paper evaluates a metaphor generator named @MetaphorMagnet, a Twitterbot that tempers the uncanny with aptness to yield results that are provocative but meaningful.