Face Recognition From Video using Active Appearance Model Segmentation

N. Faggian, A. Paplinski, Tat-Jun Chin
{"title":"Face Recognition From Video using Active Appearance Model Segmentation","authors":"N. Faggian, A. Paplinski, Tat-Jun Chin","doi":"10.1109/ICPR.2006.526","DOIUrl":null,"url":null,"abstract":"Face recognition from video can be improved if good face segmentation of the subject under test is achieved. Many video based face recognition rely on simple background modeling and coarse alignment strategies for segmentation. This work presents a face recognition from video framework based on using active appearance models (AAM) to achieve accurate face segmentation and consistent shape free representation across a video sequence. The segmentation provided by the AAM can be effectively normalized (morphed) to a mean shape. The resulting sub-image can then be delivered to conventional face recognition from video algorithms for robust classification. We present preliminary results on a dataset of 17 individuals and outline the problems encountered in this approach","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Face recognition from video can be improved if good face segmentation of the subject under test is achieved. Many video based face recognition rely on simple background modeling and coarse alignment strategies for segmentation. This work presents a face recognition from video framework based on using active appearance models (AAM) to achieve accurate face segmentation and consistent shape free representation across a video sequence. The segmentation provided by the AAM can be effectively normalized (morphed) to a mean shape. The resulting sub-image can then be delivered to conventional face recognition from video algorithms for robust classification. We present preliminary results on a dataset of 17 individuals and outline the problems encountered in this approach
基于主动外观模型分割的视频人脸识别
如果对被测对象进行良好的人脸分割,则可以提高视频中的人脸识别效果。许多基于视频的人脸识别依赖于简单的背景建模和粗对齐策略进行分割。本文提出了一种基于主动外观模型(AAM)的视频人脸识别框架,以实现准确的人脸分割和跨视频序列一致的无形状表示。AAM提供的分割可以有效地规范化(变形)到一个平均形状。然后,生成的子图像可以从视频算法中传递到传统的人脸识别中进行鲁棒分类。我们在17个人的数据集上给出了初步结果,并概述了在这种方法中遇到的问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信