Structure learning of Bayesian networks using a semantic genetic algorithm-based approach

S. Shetty, Min Song
{"title":"Structure learning of Bayesian networks using a semantic genetic algorithm-based approach","authors":"S. Shetty, Min Song","doi":"10.1109/ITRE.2005.1503164","DOIUrl":null,"url":null,"abstract":"A Bayesian network model is a popular technique for data mining due to its intuitive interpretation. This paper presents a semantic genetic algorithm (SGA) to learn a complete qualitative structure of a Bayesian network from a database. SGA builds on recent advances in the field and focuses on the generation of initial population, crossover, and mutation operators. Particularly, we introduce two semantic crossover and mutation operators that aid in faster convergence of the SGA. The crossover and mutation operators in SGA incorporate the semantic of the Bayesian network structures to learn the structure with very minimal errors. SGA has been proved to perform better than existing classical genetic algorithms for learning Bayesian networks. We present empirical results to prove the fast convergence of SGA and the predictive power of the obtained Bayesian network structures.","PeriodicalId":338920,"journal":{"name":"ITRE 2005. 3rd International Conference on Information Technology: Research and Education, 2005.","volume":"271 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITRE 2005. 3rd International Conference on Information Technology: Research and Education, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITRE.2005.1503164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

A Bayesian network model is a popular technique for data mining due to its intuitive interpretation. This paper presents a semantic genetic algorithm (SGA) to learn a complete qualitative structure of a Bayesian network from a database. SGA builds on recent advances in the field and focuses on the generation of initial population, crossover, and mutation operators. Particularly, we introduce two semantic crossover and mutation operators that aid in faster convergence of the SGA. The crossover and mutation operators in SGA incorporate the semantic of the Bayesian network structures to learn the structure with very minimal errors. SGA has been proved to perform better than existing classical genetic algorithms for learning Bayesian networks. We present empirical results to prove the fast convergence of SGA and the predictive power of the obtained Bayesian network structures.
基于语义遗传算法的贝叶斯网络结构学习
贝叶斯网络模型由于其直观的解释而成为一种流行的数据挖掘技术。本文提出了一种语义遗传算法(SGA),用于从数据库中学习贝叶斯网络的完整定性结构。SGA以该领域的最新进展为基础,重点关注初始种群、交叉和突变算子的生成。特别地,我们引入了两个语义交叉和突变算子,以帮助SGA更快地收敛。SGA中的交叉和变异算子结合了贝叶斯网络结构的语义特征,以极小的误差学习结构。在贝叶斯网络学习中,SGA算法的性能优于现有的经典遗传算法。我们的实证结果证明了SGA的快速收敛性和得到的贝叶斯网络结构的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信