Types as Resources for Classical Natural Deduction

D. Kesner, Pierre Vial
{"title":"Types as Resources for Classical Natural Deduction","authors":"D. Kesner, Pierre Vial","doi":"10.4230/LIPIcs.FSCD.2017.24","DOIUrl":null,"url":null,"abstract":"We define two resource aware typing systems for the λμ-calculus based on non-idempotent intersection and union types. The non-idempotent approach provides very simple combinatorial arguments –based on decreasing measures of type derivations– to characterize head and strongly normalizing terms. Moreover, typability provides upper bounds for the length of head-reduction sequences and maximal reduction sequences. 1998 ACM Subject Classification F.4.1 Mathematical Logic","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2017.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We define two resource aware typing systems for the λμ-calculus based on non-idempotent intersection and union types. The non-idempotent approach provides very simple combinatorial arguments –based on decreasing measures of type derivations– to characterize head and strongly normalizing terms. Moreover, typability provides upper bounds for the length of head-reduction sequences and maximal reduction sequences. 1998 ACM Subject Classification F.4.1 Mathematical Logic
类型作为经典自然演绎的资源
在非幂等交型和联合型的基础上,定义了两种资源感知的λ -微积分类型系统。非幂等方法提供了非常简单的组合论证,基于类型派生的递减测度-表征头部和强规范化项。此外,可类型性提供了头约简序列和最大约简序列长度的上界。1998 ACM学科分类F.4.1数理逻辑
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信