Comparison of Linear Controllers for Nonlinear, Open-loop Unstable Reactor

M. Khalili, B. Lie
{"title":"Comparison of Linear Controllers for Nonlinear, Open-loop Unstable Reactor","authors":"M. Khalili, B. Lie","doi":"10.3384/ecp18153185","DOIUrl":null,"url":null,"abstract":"Many industrially important reactors are operated over a regime where they exhibit nonlinear behavior. Exothermal reactors are often open-loop unstable. For such reactors, safe operation with good performance requires good control. We have considered linear controllers and tested these on a simple chemical engineering non-linear, open loop unstable model and an extension of the model in order to do a basic test of model uncertainty. Specifically, a PI controller has been tuned and tested, the operation of an Extended Kalman Filter (EKF, KF) has been tuned and tested. Based on feedback from estimated states in the EKF, a linear quadratic controller with integral action (LQG+I) has been tuned and tested; the study has been carried out using MATLAB for KF and LQG+I tuning; the remaining study has been carried out in a Jupyter Notebook using Python in tandem with Modelica. The PI controller lead to negative cooling water temperature upon a step change in temperature reference. When constraining the input to liquid water with anti-windup, PI control gives considerable undesirable overshoot in the reactor temperature. The LQG+I controller performs much better wrt. temperature overshoot. Overall, the reported work has demonstrated how a modern simulation set-up (OpenModelica + Python) can be used for model based control analysis and design.","PeriodicalId":350464,"journal":{"name":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ecp18153185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Many industrially important reactors are operated over a regime where they exhibit nonlinear behavior. Exothermal reactors are often open-loop unstable. For such reactors, safe operation with good performance requires good control. We have considered linear controllers and tested these on a simple chemical engineering non-linear, open loop unstable model and an extension of the model in order to do a basic test of model uncertainty. Specifically, a PI controller has been tuned and tested, the operation of an Extended Kalman Filter (EKF, KF) has been tuned and tested. Based on feedback from estimated states in the EKF, a linear quadratic controller with integral action (LQG+I) has been tuned and tested; the study has been carried out using MATLAB for KF and LQG+I tuning; the remaining study has been carried out in a Jupyter Notebook using Python in tandem with Modelica. The PI controller lead to negative cooling water temperature upon a step change in temperature reference. When constraining the input to liquid water with anti-windup, PI control gives considerable undesirable overshoot in the reactor temperature. The LQG+I controller performs much better wrt. temperature overshoot. Overall, the reported work has demonstrated how a modern simulation set-up (OpenModelica + Python) can be used for model based control analysis and design.
非线性开环不稳定电抗器线性控制器的比较
许多工业上重要的反应堆都是在一个它们表现出非线性行为的状态下运行的。放热反应器通常是开环不稳定的。对于这类反应堆来说,安全运行和良好的性能需要良好的控制。我们考虑了线性控制器,并在一个简单的化学工程非线性、开环不稳定模型和模型的扩展上对它们进行了测试,以便对模型不确定性进行基本测试。具体来说,一个PI控制器已经被调整和测试,一个扩展卡尔曼滤波器(EKF, KF)的操作已经被调整和测试。基于EKF中估计状态的反馈,对具有积分作用的线性二次控制器(LQG+I)进行了调谐和测试;利用MATLAB对KF和LQG+I进行了调优;剩下的研究是在Jupyter Notebook中使用Python和Modelica一起进行的。当参考温度阶跃变化时,PI控制器导致冷却水温度为负。当将输入限制为液态水时,PI控制会在反应器温度中产生相当不希望的超调。LQG+I控制器的性能要好得多。温度超调。总体而言,报告的工作展示了如何使用现代仿真设置(OpenModelica + Python)进行基于模型的控制分析和设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信