Evaluation of Predictive Capabilities of Similarity Metrics in Machine Learning

Igor Radisic, Sasa Lazarevic, I. Antović, Vojislav Stanojevic
{"title":"Evaluation of Predictive Capabilities of Similarity Metrics in Machine Learning","authors":"Igor Radisic, Sasa Lazarevic, I. Antović, Vojislav Stanojevic","doi":"10.1109/IT48810.2020.9070437","DOIUrl":null,"url":null,"abstract":"This paper explores prediction capabilities of similarity metrics used in machine learning algorithms. Predictive capabilities of various similarity metrics are examined based on their application on data sets of varying sizes and properties and evaluation of derived results. Predicting outcomes in machine learning is fundamental to many different machine learning algorithms and the findings in this paper will clarify how good their predictive capabilities are and under which conditions.","PeriodicalId":220339,"journal":{"name":"2020 24th International Conference on Information Technology (IT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 24th International Conference on Information Technology (IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IT48810.2020.9070437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper explores prediction capabilities of similarity metrics used in machine learning algorithms. Predictive capabilities of various similarity metrics are examined based on their application on data sets of varying sizes and properties and evaluation of derived results. Predicting outcomes in machine learning is fundamental to many different machine learning algorithms and the findings in this paper will clarify how good their predictive capabilities are and under which conditions.
机器学习中相似性度量的预测能力评价
本文探讨了机器学习算法中使用的相似度量的预测能力。各种相似性度量的预测能力是基于它们在不同大小和属性的数据集上的应用和派生结果的评估来检查的。机器学习中的预测结果是许多不同机器学习算法的基础,本文的研究结果将阐明它们的预测能力有多好以及在哪些条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信