Improved single PARAFAC decomposition based blind MIMO system estimation

Yuanning Yu, A. Petropulu
{"title":"Improved single PARAFAC decomposition based blind MIMO system estimation","authors":"Yuanning Yu, A. Petropulu","doi":"10.1109/ISSPIT.2005.1577078","DOIUrl":null,"url":null,"abstract":"We consider the problem of frequency domain identification of a multiple-input multiple-output (MIMO) system driven by white, mutually independent unobservable inputs. In particular, we improve upon a method recently proposed by the authors that uses PARAFAC decomposition of a tensor that is formed based on higher-order statistics of the system output. The approach of Y. Yu and A.P. Petropulu, 2005, utilizes only one slice of the output tensor to recover one row of the system response matrix. We proposed an approach that fully exploits the information in the output tensor, and as a result achieves lower error values. The proposed modification renders the method applicable to systems with more inputs than outputs","PeriodicalId":421826,"journal":{"name":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2005.1577078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of frequency domain identification of a multiple-input multiple-output (MIMO) system driven by white, mutually independent unobservable inputs. In particular, we improve upon a method recently proposed by the authors that uses PARAFAC decomposition of a tensor that is formed based on higher-order statistics of the system output. The approach of Y. Yu and A.P. Petropulu, 2005, utilizes only one slice of the output tensor to recover one row of the system response matrix. We proposed an approach that fully exploits the information in the output tensor, and as a result achieves lower error values. The proposed modification renders the method applicable to systems with more inputs than outputs
基于改进单PARAFAC分解的盲MIMO系统估计
我们考虑由白色、相互独立的不可观察输入驱动的多输入多输出(MIMO)系统的频域识别问题。特别是,我们改进了作者最近提出的一种方法,该方法使用基于系统输出的高阶统计量形成的张量的PARAFAC分解。Y. Yu和A.P. Petropulu, 2005的方法仅利用输出张量的一个片来恢复系统响应矩阵的一行。我们提出了一种充分利用输出张量中的信息的方法,从而获得更小的误差值。所提出的修改使该方法适用于输入多于输出的系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信