{"title":"Low-complexity Proximal Gauss-Newton Algorithm for Nonnegative Matrix Factorization","authors":"Kejun Huang, Xiao Fu","doi":"10.1109/GlobalSIP45357.2019.8969492","DOIUrl":null,"url":null,"abstract":"In this paper we propose a quasi-Newton algorithm for the celebrated nonnegative matrix factorization (NMF) problem. The proposed algorithm falls into the general framework of Gauss-Newton and Levenberg-Marquardt methods. However, these methods were not able to handle constraints, which is present in NMF. One of the key contributions in this paper is to apply alternating direction method of multipliers (ADMM) to obtain the iterative update from this Gauss-Newton-like algorithm. Furthermore, we carefully study the structure of the Jacobian Gramian matrix given by the Gauss-Newton updates, and designed a way of exactly inverting the matrix with complexity $\\mathcal{O}$(mnk), which is a significant reduction compared to the naive implementation of complexity $\\mathcal{O}$((m + n)3k3). The resulting algorithm, which we call NLS-ADMM, enjoys fast convergence rate brought by the quasi-Newton algorithmic framework, while maintaining low per-iteration complexity similar to that of alternating algorithms. Numerical experiments on synthetic data confirms the efficiency of our proposed algorithm.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"346 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper we propose a quasi-Newton algorithm for the celebrated nonnegative matrix factorization (NMF) problem. The proposed algorithm falls into the general framework of Gauss-Newton and Levenberg-Marquardt methods. However, these methods were not able to handle constraints, which is present in NMF. One of the key contributions in this paper is to apply alternating direction method of multipliers (ADMM) to obtain the iterative update from this Gauss-Newton-like algorithm. Furthermore, we carefully study the structure of the Jacobian Gramian matrix given by the Gauss-Newton updates, and designed a way of exactly inverting the matrix with complexity $\mathcal{O}$(mnk), which is a significant reduction compared to the naive implementation of complexity $\mathcal{O}$((m + n)3k3). The resulting algorithm, which we call NLS-ADMM, enjoys fast convergence rate brought by the quasi-Newton algorithmic framework, while maintaining low per-iteration complexity similar to that of alternating algorithms. Numerical experiments on synthetic data confirms the efficiency of our proposed algorithm.