Compressive Sampling Stepped Frequency GPR Using Probabilistic Structured Sparsity Models

V. Kafedziski
{"title":"Compressive Sampling Stepped Frequency GPR Using Probabilistic Structured Sparsity Models","authors":"V. Kafedziski","doi":"10.1109/TELSIKS52058.2021.9606334","DOIUrl":null,"url":null,"abstract":"We investigate a compressive sampling (CS) stepped frequency ground penetrating radar for detection of underground objects, which uses Bayesian estimation and a probabilistic model for the target support. Due to the underground targets being sparse, the B-scan is a sparse image. Using the CS principle, the stepped frequency radar is implemented using a subset of random frequencies at each antenna position. For image reconstruction we use Markov Chain and Markov Random Field models for the target support in the B-scan, where we also estimate the model parameters using the Expectation Maximization algorithm. The approach is tested using Web radar data obtained by measuring the signal responses scattered off land mine targets in a laboratory experimental setup. Our approach results in improved performance compared to the standard denoising algorithm for image reconstruction.","PeriodicalId":228464,"journal":{"name":"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSIKS52058.2021.9606334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate a compressive sampling (CS) stepped frequency ground penetrating radar for detection of underground objects, which uses Bayesian estimation and a probabilistic model for the target support. Due to the underground targets being sparse, the B-scan is a sparse image. Using the CS principle, the stepped frequency radar is implemented using a subset of random frequencies at each antenna position. For image reconstruction we use Markov Chain and Markov Random Field models for the target support in the B-scan, where we also estimate the model parameters using the Expectation Maximization algorithm. The approach is tested using Web radar data obtained by measuring the signal responses scattered off land mine targets in a laboratory experimental setup. Our approach results in improved performance compared to the standard denoising algorithm for image reconstruction.
基于概率结构稀疏模型的压缩采样阶跃频率探地雷达
研究了一种压缩采样(CS)阶跃频率探地雷达探测地下目标的方法,该方法采用贝叶斯估计和目标支持的概率模型。由于地下目标稀疏,b扫描是稀疏图像。利用CS原理,在每个天线位置使用随机频率子集实现步进频率雷达。对于图像重建,我们使用马尔可夫链和马尔可夫随机场模型作为b扫描中的目标支持,其中我们还使用期望最大化算法估计模型参数。该方法在实验室实验装置中通过测量地雷目标散射信号响应获得的Web雷达数据进行了测试。与用于图像重建的标准去噪算法相比,我们的方法提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信