DEM estimation from multi-Baseline ENVISAT- ASAR interferometric data through maximum likelihood techniques

F. Meglio, Gilda Schirinzi
{"title":"DEM estimation from multi-Baseline ENVISAT- ASAR interferometric data through maximum likelihood techniques","authors":"F. Meglio, Gilda Schirinzi","doi":"10.1109/IGARSS.2007.4423860","DOIUrl":null,"url":null,"abstract":"In this paper, two techniques for estimating accurate height profiles of the ground, using multi-baselines interferometric synthetic aperture radar (In-SAR) data and an a-priori inaccurate digital elevation model (DEM) of the observed scene, are analyzed. The methods are both based on maximum likelihood (ML) estimation: the first estimates directly the quota of each pixel of the image, independently from the other pixels, while the latter estimates the parameters of the local planes which best approximate, in the ML sense, the height profile in a small neighborhood of each pixel. The inclusion of this contextual information allows improving the estimation accuracy. Results on simulated and real ENVISAT-ASAR data are presented.","PeriodicalId":284711,"journal":{"name":"2007 IEEE International Geoscience and Remote Sensing Symposium","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2007.4423860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, two techniques for estimating accurate height profiles of the ground, using multi-baselines interferometric synthetic aperture radar (In-SAR) data and an a-priori inaccurate digital elevation model (DEM) of the observed scene, are analyzed. The methods are both based on maximum likelihood (ML) estimation: the first estimates directly the quota of each pixel of the image, independently from the other pixels, while the latter estimates the parameters of the local planes which best approximate, in the ML sense, the height profile in a small neighborhood of each pixel. The inclusion of this contextual information allows improving the estimation accuracy. Results on simulated and real ENVISAT-ASAR data are presented.
利用最大似然技术从多基线ENVISAT- ASAR干涉数据估计DEM
本文分析了利用多基线干涉合成孔径雷达(In- sar)数据和观测场景的先验不准确数字高程模型(DEM)估算地面精确高程轮廓的两种技术。这两种方法都是基于最大似然(ML)估计:第一种方法直接估计图像中每个像素的配额,独立于其他像素,而后者估计最接近的局部平面的参数,在ML意义上,每个像素的小邻域的高度轮廓。包含这些上下文信息可以提高估计的准确性。给出了模拟和真实ENVISAT-ASAR数据的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信