Research on Auxiliary Detection Technology for Downlink Telemetry Parameter Anomaly Discovery

Yuhai Chong, Mei Zhao, Dong Li, Baiyan Wang, Yulu Peng, Naisong Chen, Sheng Wang, Jie Hu, Qifu Luo
{"title":"Research on Auxiliary Detection Technology for Downlink Telemetry Parameter Anomaly Discovery","authors":"Yuhai Chong, Mei Zhao, Dong Li, Baiyan Wang, Yulu Peng, Naisong Chen, Sheng Wang, Jie Hu, Qifu Luo","doi":"10.1109/ICEICT55736.2022.9908802","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of efficient and automatic identification for the anomaly detection of carrier rocket downlink telemetry parameters, an automatic identification method based on the statistical characteristics of historical data is proposed for the slowly varying parameters. Under the condition of time slicing, the method first performs numerical filtering on historical measured data, and then Gaussian Process Regression (GPR) algorithm is used to locally model the segmented historical data. Secondly, the prediction output of the GPR sub-model based on each historical sample data is fused by the dynamic Gauss-Markov estimation algorithm to obtain the prediction value and prediction variance of the target data, and the parameter discrimination interval is constructed based on this. The real-time abnormal alarm is given when the statistical distribution of the measured target data of each sub segment in the discrimination interval exceeds the limit. Finally, after accumulating the complete and effective data segments of the measured parameters of the target, the global distribution is counted, and if it exceeds the limit, the parameter abnormality flag is given. Simulation results show that this method can effectively find abnormal parameters, and has strong ability to suppress random noise and more accurate parameter estimation ability.","PeriodicalId":179327,"journal":{"name":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT55736.2022.9908802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the problem of efficient and automatic identification for the anomaly detection of carrier rocket downlink telemetry parameters, an automatic identification method based on the statistical characteristics of historical data is proposed for the slowly varying parameters. Under the condition of time slicing, the method first performs numerical filtering on historical measured data, and then Gaussian Process Regression (GPR) algorithm is used to locally model the segmented historical data. Secondly, the prediction output of the GPR sub-model based on each historical sample data is fused by the dynamic Gauss-Markov estimation algorithm to obtain the prediction value and prediction variance of the target data, and the parameter discrimination interval is constructed based on this. The real-time abnormal alarm is given when the statistical distribution of the measured target data of each sub segment in the discrimination interval exceeds the limit. Finally, after accumulating the complete and effective data segments of the measured parameters of the target, the global distribution is counted, and if it exceeds the limit, the parameter abnormality flag is given. Simulation results show that this method can effectively find abnormal parameters, and has strong ability to suppress random noise and more accurate parameter estimation ability.
下行遥测参数异常发现辅助检测技术研究
为了解决运载火箭下行遥测参数异常检测的高效自动识别问题,提出了一种基于历史数据统计特征的慢变参数自动识别方法。该方法在时间切片条件下,首先对历史测量数据进行数值滤波,然后利用高斯过程回归算法对分割后的历史数据进行局部建模。其次,采用动态高斯-马尔可夫估计算法对基于各历史样本数据的探地雷达子模型预测输出进行融合,得到目标数据的预测值和预测方差,并在此基础上构造参数判别区间;当各子段测量目标数据在判别区间内的统计分布超过极限时,给出实时异常报警。最后,在累积目标测量参数的完整有效数据段后,计算全局分布,如果超过极限,则给出参数异常标志。仿真结果表明,该方法能有效地发现异常参数,并具有较强的抑制随机噪声的能力和较准确的参数估计能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信