Xin Xin, S. Keoh, Michele Sevegnani, Martin Saerbeck
{"title":"Dynamic Probabilistic Model Checking for Sensor Validation in Industry 4.0 Applications","authors":"Xin Xin, S. Keoh, Michele Sevegnani, Martin Saerbeck","doi":"10.1109/SmartIoT49966.2020.00016","DOIUrl":null,"url":null,"abstract":"Industry 4.0 adopts Internet of Things (IoT) and service-oriented architectures to integrate Cyber-Physical Systems and Enterprise Planning into manufacturing operations. This kind of integration consists of a combination of connected sensors and run-time control algorithms. Consequential control decisions are driven by sensor-generated data. Hence, the trustworthiness of the sensor network readings is increasingly crucial to guarantee the performance and the quality of a manufacturing task. However, existing methodologies to test such systems often do not scale to the complexity and dynamic nature of today’s sensor networks. This paper proposes a novel run-time verification framework combining sensor-level fault detection and system-level probabilistic model checking. This framework can rigorously quantify the trustworthiness of sensor readings, hence enabling formal reasoning for system failure prediction. We evaluated our approach on an industrial turn-mill machine equipped with a sensor network to monitor its main components continuously. The results indicate that the proposed verification framework involving the quantified sensor’s trustworthiness enhances the accuracy of the system failure prediction.","PeriodicalId":399187,"journal":{"name":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"118 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT49966.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Industry 4.0 adopts Internet of Things (IoT) and service-oriented architectures to integrate Cyber-Physical Systems and Enterprise Planning into manufacturing operations. This kind of integration consists of a combination of connected sensors and run-time control algorithms. Consequential control decisions are driven by sensor-generated data. Hence, the trustworthiness of the sensor network readings is increasingly crucial to guarantee the performance and the quality of a manufacturing task. However, existing methodologies to test such systems often do not scale to the complexity and dynamic nature of today’s sensor networks. This paper proposes a novel run-time verification framework combining sensor-level fault detection and system-level probabilistic model checking. This framework can rigorously quantify the trustworthiness of sensor readings, hence enabling formal reasoning for system failure prediction. We evaluated our approach on an industrial turn-mill machine equipped with a sensor network to monitor its main components continuously. The results indicate that the proposed verification framework involving the quantified sensor’s trustworthiness enhances the accuracy of the system failure prediction.