Bit-Width Based Resource Partitioning for CNN Acceleration on FPGA

Jianxin Guo, S. Yin, P. Ouyang, Leibo Liu, Shaojun Wei
{"title":"Bit-Width Based Resource Partitioning for CNN Acceleration on FPGA","authors":"Jianxin Guo, S. Yin, P. Ouyang, Leibo Liu, Shaojun Wei","doi":"10.1109/FCCM.2017.13","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) haveachieved great success in many applications. Recently, variousFPGA-based accelerators have been proposed to improve theperformance of CNNs. However, current most FPGA-basedmethods use single bit-width selection for all CNN layers, which lead to very low resource utilization efficiency anddifficulty in further performance improvement. In this paper, we propose a new approach utilizing bit-width partitioning ofFPGA DSP resources to improve the performance andresource utilization efficiency of CNN accelerator. Moreover, we use optimization approach to find the optimal allocationplan for DSP resources. On a Xilinx Virtex-7 FPGA, ourdesign approach achieves performance over the state-of-the-artFPGA-based CNN accelerators from 5.48x to 7.25x and by6.21x on average, when we evaluate the popular CNNs.","PeriodicalId":124631,"journal":{"name":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2017.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Convolutional neural networks (CNNs) haveachieved great success in many applications. Recently, variousFPGA-based accelerators have been proposed to improve theperformance of CNNs. However, current most FPGA-basedmethods use single bit-width selection for all CNN layers, which lead to very low resource utilization efficiency anddifficulty in further performance improvement. In this paper, we propose a new approach utilizing bit-width partitioning ofFPGA DSP resources to improve the performance andresource utilization efficiency of CNN accelerator. Moreover, we use optimization approach to find the optimal allocationplan for DSP resources. On a Xilinx Virtex-7 FPGA, ourdesign approach achieves performance over the state-of-the-artFPGA-based CNN accelerators from 5.48x to 7.25x and by6.21x on average, when we evaluate the popular CNNs.
基于位宽的FPGA CNN加速资源划分
卷积神经网络(cnn)在许多应用中取得了巨大的成功。最近,人们提出了各种基于fpga的加速器来提高cnn的性能。然而,目前大多数基于fpga的方法对所有CNN层都使用单比特宽度选择,这导致资源利用效率非常低,并且难以进一步提高性能。本文提出了一种利用位宽划分ofFPGA DSP资源的新方法,以提高CNN加速器的性能和资源利用率。此外,我们使用优化方法找出DSP资源的最优分配方案。在Xilinx Virtex-7 FPGA上,当我们评估流行的CNN时,我们的设计方法比基于最先进FPGA的CNN加速器的性能平均提高了5.48倍到7.25倍,平均提高了6.21倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信