Multi-View 3D Human Pose Estimation with Self-Supervised Learning

Inho Chang, Min-Gyu Park, Jaewoo Kim, J. Yoon
{"title":"Multi-View 3D Human Pose Estimation with Self-Supervised Learning","authors":"Inho Chang, Min-Gyu Park, Jaewoo Kim, J. Yoon","doi":"10.1109/ICAIIC51459.2021.9415244","DOIUrl":null,"url":null,"abstract":"Modern 3D human pose estimation builds on a deep learning network, requiring expensive amounts of training data that contain pairs of 2D and 3D pose annotations. In this paper, we propose a self-supervised 3D human pose estimation without 3D annotations. Instead, we exploit multi-view images and camera parameters to make the network learn 3D human pose based on geometric consistency. The merit of the proposed method is validated via experiments.","PeriodicalId":432977,"journal":{"name":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC51459.2021.9415244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modern 3D human pose estimation builds on a deep learning network, requiring expensive amounts of training data that contain pairs of 2D and 3D pose annotations. In this paper, we propose a self-supervised 3D human pose estimation without 3D annotations. Instead, we exploit multi-view images and camera parameters to make the network learn 3D human pose based on geometric consistency. The merit of the proposed method is validated via experiments.
基于自监督学习的多视图三维人体姿态估计
现代3D人体姿势估计建立在深度学习网络上,需要大量昂贵的训练数据,这些数据包含对2D和3D姿势注释。本文提出了一种不需要三维注释的自监督三维人体姿态估计方法。相反,我们利用多视图图像和相机参数使网络基于几何一致性学习3D人体姿势。通过实验验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信