Adapting grapheme-to-phoneme conversion for name recognition

Xiao Li, A. Gunawardana, A. Acero
{"title":"Adapting grapheme-to-phoneme conversion for name recognition","authors":"Xiao Li, A. Gunawardana, A. Acero","doi":"10.1109/ASRU.2007.4430097","DOIUrl":null,"url":null,"abstract":"This work investigates the use of acoustic data to improve grapheme-to-phoneme conversion for name recognition. We introduce a joint model of acoustics and graphonemes, and present two approaches, maximum likelihood training and discriminative training, in adapting graphoneme model parameters. Experiments on a large-scale voice-dialing system show that the maximum likelihood approach yields a relative 7% reduction in SER compared to the best baseline result we obtained without leveraging acoustic data, while discriminative training enlarges the SER reduction to 12%.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This work investigates the use of acoustic data to improve grapheme-to-phoneme conversion for name recognition. We introduce a joint model of acoustics and graphonemes, and present two approaches, maximum likelihood training and discriminative training, in adapting graphoneme model parameters. Experiments on a large-scale voice-dialing system show that the maximum likelihood approach yields a relative 7% reduction in SER compared to the best baseline result we obtained without leveraging acoustic data, while discriminative training enlarges the SER reduction to 12%.
适应字素到音素的名称识别转换
这项工作研究了声学数据的使用,以提高字素到音素的转换,以进行名称识别。我们引入了声学和字素的联合模型,并提出了最大似然训练和判别训练两种方法来适应字素模型参数。在大规模语音拨号系统上的实验表明,与我们在不利用声学数据的情况下获得的最佳基线结果相比,最大似然方法的SER降低了7%,而判别训练将SER降低了12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信