{"title":"An Ultra-Low Power Reversible MUX and DEMUX using QCA nanotechnology with energy dissipation","authors":"Vasudeva Bevara, P. K. Sanki","doi":"10.1109/iSES52644.2021.00082","DOIUrl":null,"url":null,"abstract":"With the rapid development of Very Large-Scale Integration (VLSI) technology, it is important to achieve a robust design with low power consumption. CMOS design has been affected by several problems over the past few years. Increasing the dissipation of power is a major problem in CMOS devices and circuits. Reversible computing can solve this issue, and reversible logic circuits serve as the foundation of quantum computing. Quantum-dot Cellular Automata (QCA) can be such a nanoscale technology and thus emerges as a promising alternative to the traditional CMOS VLSI. This work focuses on the design of a reversible multiplexer and demultiplexer in the quantum dot cell automata (QCA) framework. Experimentation reveals that the new reversible mux and demux is superior to the traditional reversible modules. The simulation, layout & energy dissipation of the proposed RMD, RM module has been carried out using the QCA Designer-E simulation tool.","PeriodicalId":293167,"journal":{"name":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSES52644.2021.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
With the rapid development of Very Large-Scale Integration (VLSI) technology, it is important to achieve a robust design with low power consumption. CMOS design has been affected by several problems over the past few years. Increasing the dissipation of power is a major problem in CMOS devices and circuits. Reversible computing can solve this issue, and reversible logic circuits serve as the foundation of quantum computing. Quantum-dot Cellular Automata (QCA) can be such a nanoscale technology and thus emerges as a promising alternative to the traditional CMOS VLSI. This work focuses on the design of a reversible multiplexer and demultiplexer in the quantum dot cell automata (QCA) framework. Experimentation reveals that the new reversible mux and demux is superior to the traditional reversible modules. The simulation, layout & energy dissipation of the proposed RMD, RM module has been carried out using the QCA Designer-E simulation tool.