Semiparametric Estimation in Network Formation Models with Homophily and Degree Heterogeneity

Peter Tóth
{"title":"Semiparametric Estimation in Network Formation Models with Homophily and Degree Heterogeneity","authors":"Peter Tóth","doi":"10.2139/ssrn.2988698","DOIUrl":null,"url":null,"abstract":"This paper considers a semiparametric version of the network formation model of Graham (2017). The two-way fixed-effects binary choice model allows for homophily and degree heterogeneity, but unlike Graham (2017) leaves the distribution of pair-specific unobservables unspecified. Identification of the slope parameters and fixed effects follows from a novel approach that does not rely on distributional assumptions. The identification strategy suggests an estimator for the slope parameters based upon tetrads of nodes within the network. A computationally simple version of this estimator is shown to be consistent with a non-parametric convergence rate. A consistent estimator of the fixed effects is also provided. Partial identification, for the case of discrete covariate support, and an extension to nonlinear fixed effects are also considered.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2988698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper considers a semiparametric version of the network formation model of Graham (2017). The two-way fixed-effects binary choice model allows for homophily and degree heterogeneity, but unlike Graham (2017) leaves the distribution of pair-specific unobservables unspecified. Identification of the slope parameters and fixed effects follows from a novel approach that does not rely on distributional assumptions. The identification strategy suggests an estimator for the slope parameters based upon tetrads of nodes within the network. A computationally simple version of this estimator is shown to be consistent with a non-parametric convergence rate. A consistent estimator of the fixed effects is also provided. Partial identification, for the case of discrete covariate support, and an extension to nonlinear fixed effects are also considered.
具有同态和程度异质性的网络形成模型的半参数估计
本文考虑了Graham(2017)的网络形成模型的半参数版本。双向固定效应二元选择模型允许同质性和程度异质性,但与Graham(2017)不同的是,对特定的不可观测值的分布未指定。边坡参数和固定效应的识别来自一种不依赖于分布假设的新方法。该识别策略提出了一种基于网络内节点四分体的斜率参数估计器。这个估计量的一个计算简单的版本被证明与一个非参数收敛率是一致的。给出了固定效应的一致估计。对于离散协变量支持的部分辨识,以及对非线性固定效应的扩展也被考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信