Short-term PV power forecasting using Support Vector Regression and local monitoring data

Ayoub Fentis, L. Bahatti, Mohamed Mestari, M. Tabaa, A. Jarrou, B. Chouri
{"title":"Short-term PV power forecasting using Support Vector Regression and local monitoring data","authors":"Ayoub Fentis, L. Bahatti, Mohamed Mestari, M. Tabaa, A. Jarrou, B. Chouri","doi":"10.1109/IRSEC.2016.7983968","DOIUrl":null,"url":null,"abstract":"In recent years many research works have study the problem of photovoltaic power forecasting because of its importance to grid management and large-scale PV integration. In order to forecast the Photovoltaic power production in the region of Casablanca Morocco, a simple and reliable model based on Support Vector Regression (SVR) and local monitoring data is proposed in this paper. Three models based on ε-SVR, ν-SVR and LS-SVR are compared using five performance indicators, MAE, MSE, RMSE, R2 and RRMSE (%). The best model shows a good results with an RRMSE of 15.23% and a coefficient of determination R2 = 0.96%.","PeriodicalId":180557,"journal":{"name":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2016.7983968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In recent years many research works have study the problem of photovoltaic power forecasting because of its importance to grid management and large-scale PV integration. In order to forecast the Photovoltaic power production in the region of Casablanca Morocco, a simple and reliable model based on Support Vector Regression (SVR) and local monitoring data is proposed in this paper. Three models based on ε-SVR, ν-SVR and LS-SVR are compared using five performance indicators, MAE, MSE, RMSE, R2 and RRMSE (%). The best model shows a good results with an RRMSE of 15.23% and a coefficient of determination R2 = 0.96%.
基于支持向量回归和局部监测数据的短期光伏发电预测
由于光伏发电功率预测对电网管理和大规模光伏并网的重要性,近年来许多研究工作都在研究光伏发电功率预测问题。为了对摩洛哥卡萨布兰卡地区的光伏发电进行预测,本文提出了一种基于支持向量回归(SVR)和当地监测数据的简单可靠的模型。利用MAE、MSE、RMSE、R2和RRMSE(%) 5个绩效指标,对基于ε-SVR、ν-SVR和LS-SVR的3种模型进行了比较。最佳模型结果良好,RRMSE为15.23%,决定系数R2 = 0.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信