Capturing Outlines of Planar Images by Cubic Spline using Stochastic Evolution

M. Sarfraz, M. T. Parvez, Aliea Rizvi
{"title":"Capturing Outlines of Planar Images by Cubic Spline using Stochastic Evolution","authors":"M. Sarfraz, M. T. Parvez, Aliea Rizvi","doi":"10.1109/CGIV.2007.23","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a new technique of curve fitting. The technique has various phases including extracting outlines of images, detecting corner points from the detected outline, addition of extra knot points if needed. The last phase makes a significant contribution by making the technique automated. It uses the idea of stochastic evolution to optimize the shape parameters in the description of the generalized cubic spline. It ultimately produces optimal results for the approximate vectorization of the digital contour obtained from the planar images.","PeriodicalId":433577,"journal":{"name":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2007.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper is concerned with a new technique of curve fitting. The technique has various phases including extracting outlines of images, detecting corner points from the detected outline, addition of extra knot points if needed. The last phase makes a significant contribution by making the technique automated. It uses the idea of stochastic evolution to optimize the shape parameters in the description of the generalized cubic spline. It ultimately produces optimal results for the approximate vectorization of the digital contour obtained from the planar images.
基于随机进化的三次样条捕获平面图像的轮廓
本文研究了一种新的曲线拟合技术。该技术有多个阶段,包括提取图像的轮廓,从检测到的轮廓中检测角点,如果需要的话添加额外的结点。最后一个阶段通过使技术自动化做出了重大贡献。在广义三次样条曲线的描述中,采用随机进化的思想对形状参数进行优化。它最终为从平面图像中获得的数字轮廓的近似矢量化提供了最优结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信