Towards effective processing of large text collections

J. Szymański, H. Krawczyk
{"title":"Towards effective processing of large text collections","authors":"J. Szymański, H. Krawczyk","doi":"10.1109/INTECH.2012.6457784","DOIUrl":null,"url":null,"abstract":"In the article we describe the approach to parallel implementation of elementary operations for textual data categorization. In the experiments we evaluate parallel computations of similarity matrices and k-means algorithm. The test datasets have been prepared as graphs created from Wikipedia articles related with links. When we create the clustering data packages, we compute pairs of eigenvectors and eigenvalues for visualizations of the datasets. We describe the method used for evaluation of the clustering quality. Finally we discuss achieved results, point some improvements and perspectives for future development.","PeriodicalId":369113,"journal":{"name":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTECH.2012.6457784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the article we describe the approach to parallel implementation of elementary operations for textual data categorization. In the experiments we evaluate parallel computations of similarity matrices and k-means algorithm. The test datasets have been prepared as graphs created from Wikipedia articles related with links. When we create the clustering data packages, we compute pairs of eigenvectors and eigenvalues for visualizations of the datasets. We describe the method used for evaluation of the clustering quality. Finally we discuss achieved results, point some improvements and perspectives for future development.
朝着有效处理大型文本集合的方向发展
在本文中,我们描述了用于文本数据分类的基本操作的并行实现方法。在实验中,我们评估了相似矩阵和k-means算法的并行计算。测试数据集已经准备好了从维基百科链接相关文章中创建的图表。当我们创建聚类数据包时,我们计算数据集可视化的特征向量和特征值对。我们描述了用于评价聚类质量的方法。最后对取得的成果进行了讨论,并对今后的发展提出了改进意见和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信