A non-minimum phase robust nonlinear neuro-wavelet predictive control strategy for a quadruple tank process

K. Owa, Asiya Khan, Sanjay K. Sharma, R. Sutton
{"title":"A non-minimum phase robust nonlinear neuro-wavelet predictive control strategy for a quadruple tank process","authors":"K. Owa, Asiya Khan, Sanjay K. Sharma, R. Sutton","doi":"10.1504/IJPSE.2018.093702","DOIUrl":null,"url":null,"abstract":"In process industries model-plant mismatch is a significant problem. Quadruple tank process (QTP) can be configured both in minimum phase and non-minimum phase (NMP). However, in NMP, the control of QTP poses a challenge. This paper addresses that and presents a novel robust wavelet based non-minimum phase control (NMPC) strategy for the challenging QTP using genetic algorithm to find the optimised value of the manipulated variables in NMPC at every sampling time. The QTP is modelled based on wavelet neural network. The simulation results indicate that significant improvements have been achieved both in modelling and control strategies for a QTP system compare to conventional approaches such as the Levenberg-Marquardt.","PeriodicalId":360947,"journal":{"name":"International Journal of Process Systems Engineering","volume":"32 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Process Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJPSE.2018.093702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In process industries model-plant mismatch is a significant problem. Quadruple tank process (QTP) can be configured both in minimum phase and non-minimum phase (NMP). However, in NMP, the control of QTP poses a challenge. This paper addresses that and presents a novel robust wavelet based non-minimum phase control (NMPC) strategy for the challenging QTP using genetic algorithm to find the optimised value of the manipulated variables in NMPC at every sampling time. The QTP is modelled based on wavelet neural network. The simulation results indicate that significant improvements have been achieved both in modelling and control strategies for a QTP system compare to conventional approaches such as the Levenberg-Marquardt.
四缸过程的非最小相位鲁棒非线性神经小波预测控制策略
在过程工业中,模型与设备不匹配是一个重要的问题。四缸工艺(QTP)可以配置为最小相和非最小相。然而,在NMP中,QTP的控制提出了一个挑战。本文解决了这一问题,并提出了一种新的基于小波的非最小相位控制(NMPC)策略,用于具有挑战性的QTP,该策略使用遗传算法在每个采样时间找到NMPC中被操纵变量的最优值。基于小波神经网络对QTP进行建模。仿真结果表明,与传统方法(如Levenberg-Marquardt)相比,该方法在QTP系统的建模和控制策略方面都取得了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信